第三章函数逼近与曲线拟合1.()sin2fxx,给出[0,1]上的伯恩斯坦多项式1(,)Bfx及3(,)Bfx。解:()sin,2fx[0,1]x伯恩斯坦多项式为0(,)()()nnkkkBfxfPxn其中()(1)knkknPxxxk当1n时,01()(1)0Pxx1101()(,)(0)()(1)()1(1)sin(0)sin022PxxBfxfPxfPxxxx当3n时,302212223331()(1)01()(1)3(1)03()(1)3(1)13()3PxxPxxxxxPxxxxxPxxx3302232233223(,)()()03(1)sin3(1)sinsin632333(1)(1)2253333632221.50.4020.098kkkBfxfPxnxxxxxxxxxxxxxxxx2.当()fxx时,求证(,)nBfxx证明:若()fxx,则0(,)()()nnkkkBfxfPxn00111(1)(1)11(1)(1)(1)(1)!(1)[(1)(1)1](1)(1)!1(1)11(1)1[(1)]nknkknknkknknkknknkknknkknnkxxknknnnkxxnknnkxxknxxknxxxkxxxx3.证明函数1,,,nxx线性无关证明:若20120,nnaaxaxaxxR分别取(0,1,2,,)kxkn,对上式两端在[0,1]上作带权()1x的内积,得0101010211111naaannn此方程组的系数矩阵为希尔伯特矩阵,对称正定非奇异,只有零解a=0。函数1,,,nxx线性无关。4。计算下列函数()fx关于[0,1]C的1,ff与2f:3(1)()(1),[0,1]1(2)(),2fxxxfxx(3)()(1),mnfxxxm与n为正整数,10(4)()(1)xfxxe解:(1)若3()(1),[0,1]fxxx,则2()3(1)0fxx3()(1)fxx在(0,1)内单调递增01max()max(0),(1)max0,11xffxff01max()max(0),(1)max0,11xffxff116220172((1))11[(1)]0777fxdxx(2)若1(),0,12fxxx,则011101121max()2()12()214xffxffxdxxdx11222011220(())1[()]236ffxdxxdx(3)若()(1),mnfxxxm与n为正整数当0,1x时,()0fx1111()(1)(1)(1)(1)(1)mnmnmnfxmxxxnxnmxxmxm当(0,)mxnm时,()0fx()fx在(0,)mnm内单调递减当(,1)mxnm时,()0fx()fx在(,1)mnm内单调递减。01(,1)()0max()max(0),()()xmnmnmxfxnmffxmffnmmnmn11010222202220()(1)(sin)(1sin)sinsincoscos2sin!!(1)!mnmnmnffxdxxxdxttdtttttdtnmnm1122220144222014141220[(1)][sincos(sin)][2sincos](2)!(2)![2()1]!mnmnmnfxxdxttdtttdtnmnm(4)若10()(1)xfxxe当0,1x时,()0fx9109()10(1)(1)()(1)(9)0xxxfxxexexex()fx在[0,1]内单调递减。0110110110011090112022202max()max(0),(1)2()(1)1(1)10(1)0105[(1)]347()4xxxxxffxffeffxdxxedxxexedxefxedxe5。证明fgfg证明:()ffggfggfgfg6。对1(),()[,]fxgxCab,定义(1)(,)()()(2)(,)()()()()babafgfxgxdxfgfxgxdxfaga问它们是否构成内积。解:(1)令()fxC(C为常数,且0C)则()0fx而(,)()()bafffxfxdx这与当且仅当0f时,(,)0ff矛盾不能构成1[,]Cab上的内积。(2)若(,)()()()()bafgfxgxdxfaga,则(,)()()()()(,),(,)[()]()()()[()()()()](,)bababagfgxfxdxgafafgKfgfxgxdxafagafxgxdxfagafg1[,]hCab,则(,)[()()]()[()()]()()()()()()()()()(,)(,)babbaafghfxgxhxdxfagahafxhxdxfahafxhxdxgahafhhg22(,)[()]()0bafffxdxfa若(,)0ff,则2[()]0bafxdx,且2()0fa()0,()0fxfa()0fx即当且仅当0f时,(,)0ff.故可以构成1[,]Cab上的内积。7。令*()(21),[0,1]nnTxTxx,试证*()nTx是在[0,1]上带权21()xxx的正交多项式,并求****0123(),(),(),()TxTxTxTx。解:若*()(21),[0,1]nnTxTxx,则1**0120()()()1(21)(21)nmnmTxTxPxdxTxTxdxxx令(21)tx,则[1,1]t,且12tx,故1**0112121()()()11()()()211()221()()1nmnmnmTxTxxdxtTtTtdttTtTtdtt又切比雪夫多项式*()kTx在区间[0,1]上带权21()1xx正交,且1210,()(),021,0nmnmxTxTxdnmtnm*()nTx是在[0,1]上带权21()xxx的正交多项式。又0()1,[1,1]Txx*001*11()(21)1,[0,1](),[1,1]()(21)21,[0,1]TxTxxTxxxTxTxxx22*2222()21,[1,1]()(21)2(21)1881,[0,1]TxxxTxTxxxxx33*33()43,[1,1]()(21)TxxxxTxTx3324(21)3(21)3248181,[0,1]xxxxxx8。对权函数2()1xx,区间[1,1],试求首项系数为1的正交多项式(),0,1,2,3.nxn解:若2()1xx,则区间[1,1]上内积为11(,)()()()fgfxgxxdx定义0()1x,则11()()()()nnnnnxxxx其中1101211211211321122111221121((),())/((),())((),())/((),())(,1)/(1,1)(1)(1)0()(,)/(,)(1)(1)0(,)/(1,1)(1)(1)nnnnnnnnnnxxxxxxxxxxxxdxxdxxxxxxxxxdxxxdxxxxxdxx22162158532()5dxxx32222132211222122212221122132332222(,)/(,)555522()()(1)5522()()(1)55022(,)/(,)5522()()(1)55(1)136175251670152179()57014xxxxxxxxxdxxxxdxxxxxxxxdxxxdxxxxxxx9。试证明由教材式(2.14)给出的第二类切比雪夫多项式族()nux是[0,1]上带权2()1xx的正交多项式。证明:若2sin[(1)arccos]()1nnxUxx令cosx,可得121121020()()1sin[(1)arccos]sin[(1)arccos]1sin[(1)sin[(1)]1cossin[(1)sin[(1)]mnUxUxxdxmxnxdxxmndmnd当mn时,200sin[(1)1cos[2(1)]22mdmd当mn时,0000020sin[(1)sin[(1)]1sin[(1){cos(1)}11cos(1){sin[(1)]}11cos(1)cos(1)111cos[(1)]{sin[(1)]}111sin[(1)]{cos[(1)]}(1)(mndmdnnndmnmnmdnmmdnnnmndmnm201)sin[(1)]sin[(1)]10nmdn201[1()]sin[(1)]sin[(1)]01mnmdn又mn,故21()11mn0sin[(1)]sin[(1)]0nmd得证。10。证明切比雪夫多项式()nTx满足微分方程22(1)()()()0nnnxTxxTxnTx证明:切比雪夫多项式为()cos(arccos),1nTxnxx从而有22232222222221()sin(arccos)()1sin(arccos)1()sin(arccos)cos(arccos)1(1)(1)()()()sin(arccos)cos(arccos)1sin(arccos)cos(arcco1nnnnnTxnxnxnnxxnnTxnxnxxxxTxxTxnTxnxnxnnxxnxnxnnxs)0x得证。11。假设()fx在[,]ab上连续,求()fx的零次最佳一致逼近多项式?解:()fx在闭区间[,]ab上连续存在12,[,]xxab,使12()min(),()max(),axbaxbfxfxfxfx取121[()()]2Pfxfx则1x和2x是[,]ab上的2个轮流为“正”、“负”的偏差点。由切比雪夫定理知P为()fx的零次最佳一致逼近多项式。12。选取常数a,使301maxxxax达到极小,又问这个解是否唯一?解:令3()fxxax则()fx在[1,1]上为奇函数301311maxmaxxxxaxxaxf又()fx的最高次项系数为1,且为3次多项式。3331()()2xT