2.2直接证明与间接证明2.2.1综合法和分析法演绎推理是证明数学结论、建立数学体系的重要思维过程.数学结论、证明思路的发现,主要靠合情推理.复习推理合情推理(或然性推理)演绎推理(必然性推理)归纳(特殊到一般)类比(特殊到特殊)三段论(一般到特殊)例:已知a0,b0,求证a(b2+c2)+b(c2+a2)≥4abc因为b2+c2≥2bc,a0所以a(b2+c2)≥2abc.又因为c2+a2≥2ac,b0所以b(c2+a2)≥2abc.因此a(b2+c2)+b(c2+a2)≥4abc.证明:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法(顺推证法)用P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论.则综合法用框图表示为:1PQ12QQ23QQnQQ…特点:“由因导果”:??分析由A,B,C成等差数列可得什么由a,b,c成等比数列可得什么0260(?)ACBB为什么2bac?怎样把边,角联系起来222:2cosbacacB余弦定理符号语言图形语言文字语言学会语言转换找出隐含条件例1:在△ABC中,三个内角A、B、C对应的边分别为a、b、c,且A、B、C成等差数列,a、b、c成等比数列,求证△ABC为等边三角形.分析法回顾基本不等式:(a0,b0)的证明.a+bab2证明:因为;所以所以所以成立()b20a20a+bab2a+baba+bab2证明:要证;只需证;只需证;只需证;因为;成立所以成立a+bab22a+bab20a+bab()b20a()b20aa+bab2一般地,从要证明的结论出发,逐步寻求推证过程中,使每一步结论成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明的方法叫做分析法.特点:执果索因.用框图表示分析法的思考过程、特点.1QP23PP12PP得到一个明显成立的结论…例2求证37253725解:要证()()223725只需证展开,只需证215只需证2125因为2125成立,所以成立.372522222π例3.已知α,β≠kπ+(kZ),且2sinθ+cosθ=2sinαsinθcosθ=sinβ1-tanα1-tanβ求=.1+tanα2(1+tanβ)证:用P表示已知条件,定义,定理,公理等,用Q表示要证的结论,则上述过程可用框图表示为:P89小结1.在数学证明中,综合法和分析法是两种最常用的数学方法,若从已知入手能找到证明的途径,则用综合法,否则用分析法.2.综合法的每步推理都是寻找必要条件,分析法的每步推理都是寻找充分条件,在解题表述中要注意语言的规范性和逻辑性.3.综合法和分析法是两种互逆的思维模式,在证明某些较复杂的问题时,常采用分析综合法,用综合法拓展条件,用分析法转化结论,找出已知与结论的连结点.作业:P91A组2,B组2