19.已知Rt△ABC的周长为,其中斜边,求这个三角形的面积。10.如果把勾股定理的边的平方理解为正方形的面积,那么从面积的角度来说,勾股定理可以推广.(1)如图,以Rt△ABC的三边长为边作三个等边三角形,则这三个等边三角形的面积1S、2S、3S之间有何关系?并说明理由。(2)如图,以Rt△ABC的三边长为直径作三个半圆,则这三个半圆的面积1S、2S、3S之间有何关系?(3)如果将上图中的斜边上的半圆沿斜边翻折180°,请探讨两个阴影部分的面积之和与直角三角形的面积之间的关系,并说明理由。(此阴影部分在数学史上称为“希波克拉底月牙”)题型二:利用勾股定理测量长度例1.如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米?跟踪练习:1.如图(8),水池中离岸边D点1.5米的C处,直立长着一根芦苇,出水部分BC的长是0.5米,把芦苇拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC.2.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以达该建筑物的最大高度是()A、12米B、13米C、14米D、15米3.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行()2A、8米B、10米C、12米D、14米题型三:勾股定理和逆定理并用——例3.如图3,正方形ABCD中,E是BC边上的中点,F是AB上一点,且ABFB41那么△DEF是直角三角形吗?为什么?注:本题利用了四次勾股定理,是掌握勾股定理的必练习题。跟踪练习:1.如图,正方形ABCD中,E为BC边的中点,F点CD边上一点,且DF=3CF,求证:∠AEF=90°题型四:利用勾股定理求线段长度——例1.如图4,已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.跟踪练习:1.如图,将一个有45度角的三角板顶点C放在一张宽为3cm的纸带边沿上,另一个顶点B在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,求三角板的最大边AB的长.2.如图,在△ABC中,AB=BC,∠ABC=90°,D为AC的中点,DE⊥DF,交AB于E,交BC于F,(1)求证:BE=CF;(2)若AE=3,CF=1,求EF的长.33.如图,CA=CB,CD=CE,∠ACB=∠ECD=90°,D为AB边上的一点.若AD=1,BD=3,求CD的长.题型五:利用勾股定理逆定理判断垂直——例1.有一个传感器控制的灯,安装在门上方,离地高4.5米的墙上,任何东西只要移至5米以内,灯就自动打开,一个身高1.5米的学生,要走到离门多远的地方灯刚好打开?跟踪练习:1.如图,每个小正方形的边长都是1,△ABC的三个顶点分别在正方形网格的格点上,试判断△ABC的形状,并说明理由.(1)求证:∠ABD=90°;(2)求的值2.下列各组数中,以它们边的三角形不是直角三角形的是()A、9,12,15B、7,24,25C、D、,,43.在△ABC中,下列说法①∠B=∠C-∠A;②;③∠A:∠B:∠C=3:4:5;④a:b:c=5:4:3;⑤::=1:2:3,其中能判断△ABC为直角三角形的条件有()A、2个B、3个C、4个D、5个4.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c.判断下列三角形是否为直角三角形?并判断哪一个是直角?(1)a=26,b=10,c=24;(2)a=5,b=7,c=9;(3)a=2,,A、2个B、3个C、4个D、5个5.已知△ABC的三边长为a、b、c,且满足,则此时三角形一定是()A、等腰三角形B、直角三角形C、等腰直角三角形D、锐角三角形6.在△ABC中,若a=12n,b=2n,c=12n,则△ABC是()A、锐角三角形B、钝角三角形C、等腰三角形D、直角三角形7.如图,正方形网格中的△ABC是()A、直角三角形B、锐角三角形C、钝角三角形D、锐角三角形或钝角三角形8.已知在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列说法中,错误的是()A、如果∠C-∠B=∠A,那么∠C=90°B、如果∠C=90°,那么C、如果(a+b)(a-b)=,那么∠A=90°D、如果∠A=30°,那么AC=2BC9.已知△ABC的三边分别为a,b,c,且a+b=3,ab=1,,求的值,试判断△ABC的形状,并说明理由10.观察下列各式:,,,……,根据其中规律,写出下一个式子为_____________11.已知,m>n,m、n为正整数,以,2mn,为边的三角形是___三角形.12.一个直角三角形的三边分别为n+1,n-1,8,其中n+1是最大边,当n为多少时,三角形为直角三角形?题型六:旋转问题:例题6.如图,P是等边三角形ABC内一点,PA=2,PB=23,PC=4,求△ABC的边长.跟踪练习1.如图,△ABC为等腰直角三角形,∠BAC=90°,E、F是BC上的点,且∠EAF=45°,试探究5222BECFEF、、间的关系,并说明理由.题型七:关于翻折问题例题7.如图,矩形纸片ABCD的边AB=10cm,BC=6cm,E为BC上一点,将矩形纸片沿AE折叠,点B恰好落在CD边上的点G处,求BE的长.跟踪练习1.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿直线AD翻折,点C落在点C’的位置,BC=4,求BC’的长.(一)折叠直角三角形1.如图,在△ABC中,∠A=90°,点D为AB上一点,沿CD折叠△ABC,点A恰好落在BC边上的'A处,AB=4,AC=3,求BD的长。62.如图,Rt△ABC中,∠B=90°,AB=3,AC=5.将△ABC折叠使C与A重合,折痕为DE,求BE的长.(二)折叠长方形1.如图,长方形ABCD中,AB=4,BC=5,F为CD上一点,将长方形沿折痕AF折叠,点D恰好落在BC上的点E处,求CF的长。2.如图,长方形ABCD中,AD=8cm,AB=4cm,沿EF折叠,使点D与点B重合,点C与C'重合.(1)求DE的长;(2)求折痕EF的长.3.(2013•常德)如图,将长方形纸片ABCD折叠,使边CD落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为()4.如图,长方形ABCD中,AB=6,AD=8,沿BD折叠使A到A′处DA′交BC于F点.(1)求证:FB=FE(2)求证:CA′∥BD7(3)求△DBF的面积7.如图,正方形ABCD中,点E在边CD上,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,G为BC的中点,连结AG、CF.(1)求证:AG∥CF;(2)求的值.题型八:关于勾股定理在实际中的应用:例1、如图,公路MN和公路PQ在P点处交汇,点A处有一所中学,AP=160米,点A到公路MN的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?例2.一辆装满货物高为1.8米,宽1.5米的卡车要通过一个直径为5米的半圆形双向行驶隧道,它能顺利通过吗?跟踪练习:1.某市气象台测得一热带风暴中心从A城正西方向300km处,以每小时26km的速度向北偏东60°方向8移动,距风暴中心200km的范围内为受影响区域。试问A城是否受这次风暴的影响?如果受影响,请求出遭受风暴影响的时间;如果没有受影响,请说明理由。2.一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如下图的某工厂,问这辆卡车能否通过该工厂的厂门?3.有一个边长为50dm的正方形洞口,想用一个圆盖去盖住这个洞口,圆的直径至少多长?(结果保留整数)4.如图,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少km处?题型九:关于最短性问题例1、如右图1-19,壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A处,它发现在自己的正上方油罐上边缘的B处有一只害虫,便决定捕捉这只害虫,为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行突然袭击.结果,壁虎的偷袭得到成功,获得了一顿美9餐.请问壁虎至少要爬行多少路程才能捕到害虫?(π取3.14,结果保留1位小数,可以用计算器计算)例2.跟踪练习:1.如图为一棱长为3cm的正方体,把所有面都分为9个小正方形,其边长都是1cm,假设一只蚂蚁每秒爬行2cm,则它从下地面A点沿表面爬行至右侧面的B点,最少要花几秒钟?2.如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm,3cm和1cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少?3.一个长方体盒子的长、宽、高分别为8cm,6cm,12cm,一只蚂蚁想从盒底的A点爬到盒顶的B点,你能帮蚂蚁设计一条最短的线路吗?蚂蚁要爬行的最短路程是多少?4.如图将一根13.5厘米长的细木棒放入长、宽、高分别为4厘米、3厘米和12厘米的长方体无盖盒子中,能全部放进去吗?BA531BAA3??A10题型十:勾股定理与特殊角(一)直接运用30°或45°的直角三角形1.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,若AC=23,求AD的长。2.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,CD⊥AB于D,∠A=30°,CD=2,求AB的长。3.如图,在△ABC中,AD⊥BC于D,∠B=60°,∠,C=45°,AC=2,求BD的长。(二)作垂线构造30°或45°的直角三角形(1)将105°转化为45°和60°1.如图,在△ABC中,∠B=45°,∠A=105°,AC=2,求BC的长。2.如图,在四边形ABCD中,∠A=∠C=45°,∠ADB=∠ABC=105°,⑴若AD=2,求AB的长;⑵若AB+CD=23+2,求AB的长。11(2)将75°转化为30°和45°3.如图,在△ABC中,∠B=45°,∠BAC=75°,AB=6,求BC的长。题型十一:运用勾股定理列方程(一)直接用勾股定理列方程1.如图,在△ABC中,∠C=90°,AD平分∠CAB交CB于D,CD=3,BD=5,求AD的长。2.如图,在△ABC中,AD⊥BC于D,且∠CAD=2∠BAD,若BD=3,CD=8,求AB的长。(二)巧用“连环勾”列方程1.如图,在△ABC中,AB=5,BC=7,AC=24,求ABCS.ABDC122.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,AC=3,BC=4,求AD的长。3.如图,△ABC中,∠ACB=90°,CD⊥AB于D,AD=1,BD=4,求AC的长4.如图,△ABC中,∠ACB=90°,CD⊥AB于D,CD=3,BD=4,求AD的长题型十二:勾股定理与分类讨论(一)锐角与钝角不明时需分类讨论1.在△ABC中,AB=AC=5,,求BC的长2.在△ABC中,AB=15,AC=13,AD为△ABC的高,且AD=12,求△ABC的面积。13(二)腰和底不明时需分类讨论3.如图1,△ABC中,∠ACB=90°,AC=6,BC=8,点D为射线AC上一点,且△ABD是等腰三角形,求△ABD的周长.(三)直角边和斜边不明时需分类讨论1.已知直角三角形两边分别为2和3,则第三边的长为_____________2.在△ABC中,∠ACB=90°,AC=4,BC=2,以AB为边向外作等腰直角三角形ABD,求CD的长3.如图,D(2,1),以OD为一边画等腰三角形,并且使另一个顶点在x轴上,这样的等腰三角形能画多少个?写出落在x轴上的顶点坐标.题型十三:或问题的证明