光拍法测量光速光在真空中的传播速度是一个极其重要的基本物理量,许多物理概念和物理量都与它有密切的联系,因此光速的测量是物理学中的一个十分重要的课题。本实验的目的是通过测量光拍的波长和频率来确定光速,掌握光拍频法测量光速的原理和实验方法。一、实验目的1.掌握光拍频法测量光速的原理和实验方法,并对声光效应有一初步了解。2.通过测量光拍的波长和频率来确定光速。二、原理根据振动叠加原理,频差较小,速度相同的两列同向传播的简谐波叠加即形成拍。若有振幅相同为E0、圆频率分别为1和2(频差21较小)的二光束:)cos(11101xktEE)cos(22202xktEE式中11/2k,22/k为圆波数,1和2分别为两列波在坐标原点的初位相。若这两列光波的偏振方向相同,则叠加后的总场为:图1拍频波场在某一时刻t的空间分布]2)(2cos[]2)(2cos[221212121021cxtcxtEEEE上式是沿x轴方向的前进波,其圆频率为2/)(21,振幅为]2)(2cos[2210cxtE,因为振幅以频率为4/f周期性地变化,所以被称为拍频波,f称为拍频。如果将光频波分为两路,使其通过不同光程后入射同一光电探测器,则该探测器所输出的两个光拍信号的位相差与两路光的光程差L之间的关系仍由上式确定。当2时,L=,恰为光拍波长,此时上式简化为:fc,可见,只要测定了和f,即可确定光速c。为产生光拍频波,要求相叠加的两光波具有一定的频差,这可通过超声与光波的相互作用来实现。超声(弹性波)在介质中传播,使介质内部产生应变引起介质折射率的周期性变化,就使介质成为一个位相光栅。当入射光通过该介质时发生衍射,其衍射光的频率与声频有关。具体方法有两种,一种是行波法,如图2(a)所示,在声光介质与声源(压电换能器)相对的端面敷以吸声材料,防止声反射,以保证只有声行波通过介质。当激光束通过相当于位相光栅的介质时,使激光束产生对称多级衍射和频移,第L级衍射光的圆频率为LΩL0,其中0的是入射光的圆频率,Ω为超声波的圆频率,L=0,±1,±2,...为衍射级。利用适当的光路使零级与+l级衍射光汇合起来,沿同一条路径传播,即可产生频差为Ω的光拍频波。另一种是驻波法,如图2(b)所示,在声光介质与声源相对的端面敷以声反射材料,以增强声反射。沿超声传播方向,当介质的厚度恰为超声半波长的整数倍时,前进波与反射波在介质中形成驻波超声场,这样的介质也是一个超声位相光栅,激光束通过时也要发生衍射,且衍射效率比行波法要高。第L级衍射光的圆频率为ΩmLmL)2(0,若超声波功率信号源的频率为F=/2,则第L级衍射光的频率为图2相拍二光波获得示意图FmLffomL)2(,式中L,m=0,士1,±2,...,可见,除不同衍射级的光波产生频移外,在同一级衍射光内也有不同频率的光波。因此,用同一级衍射光就可获得不同的拍频波。例如,选取第1级(或零级),由m=0和m=-1的两种频率成分叠加,可得到拍频为2F的拍频波。比较两种方法,显然驻波法有利。本实验采用的是驻波法制成的声光频移器。三仪器与装置本实验所用仪器有CG-Ⅲ型光速测定仪、ST-16型示波器和数字频率计各一台。1、光拍法测光速的电路原理:电路原理图如图3所示。1)发射部分长250mm的氦氖激光管输出激光的波长为632.8nm,功率大于1mw的激光束射入声光移频器中,同时高频信号源输出的频率为15MHZ左右、功率1w左右的正弦信号加在频移器的晶体换能器上,在声光介质中产生声驻波,使介质产生相应的疏密变化,形成一位相光栅,则出射光具有两种以上的光频,其产生的光拍信号为高频信号的倍频。图3光拍法测光速的电原理图2)光电接收和信号处理部分由光路系统出射的拍频光,经光电二极管接收并转化为频率为光拍频的电信号,输入至混频电路盒。该信号与本机振荡信号混频,选频放大,输出到ST-16示波器的Y输入端。与此同时,高频信号源的另一路输出信号与经过二分频后的本振信号混频。选频放大后作为ST-16示波器的外触发信号。需要指出的是,如果使用示波器内触发,将不能正确显示二路光波之间的位相差。3)电源激光电源采用倍压整流电路,工作电压部分采用大电解电容,使之有一定的电流输出,触发电压采用小容量电容,利用其时间常数小的性质,使该部分电路在有工作负载的情况下形同短路,结构简洁有效。±12V电源采用三端固定集成稳压器件,负载大于300mA,供给光电接受器和信号处理部分以及功率信号源。±12V降压调节处理后供给斩光器之小电机。2、光拍法测光速的光路图4为光速测量仪的光路图。图4CG-Ⅲ型光速测定仪光路图实验中,用斩光器依次切断光束①和②,则在示波器屏上同时显示光束①和②的拍频信号正弦波形。调节两路光的光程差,当光程差恰好等于一个拍频波长时,两正弦波的位相差恰为2,波形第一次完全重合,根据(4)式得ΛFfc.2.(5)由光路测得Λ,用数字频率计测得高频信号源的输出频率F,根据上式可得出空气中的光速c。因为实验中的拍频波长约为10m,为了使装置紧凑,远程光路采用折叠式,如图3-5-4所示。图中光束①表示远程光路,光束②表示近程光路。实验中用圆孔光阑取出第0级衍射光产生拍频波,将其他级衍射光滤掉。四实验内容与步骤1.调节光速测定仪底脚螺丝,使仪器处于水平状态2.按图3连接线路,接通激光电源,调节电流至5mA,接通12V直流稳压电源,预热15分钟后,使它们处于稳定工作状态。3.调节高频信号源的输出频率(15MHZ左右)使衍射光最强。4.按图4调整光路1)调节光栏2的高度与反射镜3的中心等高,使0级衍射光通过光栏入射到全反镜3的中心。2)用斩光器13挡住远程光,调节全反射镜3和半反射镜12,使近程光沿光电二极管前透镜的光轴入射到光电二极管的光敏面上。接通示波器,并使其处于外触发状态,这时示波器屏上将出现近程光的光拍信号。(3)用斩光器13挡住近程光,调节半反射镜4、全反射镜5至10和正交全反射镜组11,经半反射镜12与近程光同路入射到光电二极管的光敏面上。这时示波器屏上应有远程光的光拍信号。5.接通斩光器13的电机开关,调节微调旋扭使斩光频率约30HZ左右,这时将在示波器上显示出近程光和远程光的拍频波信号。6.在光电接收盒上有两个旋扭,调节这两个旋扭可以改变光电二极管的方位,使示波器屏上显示的两个波形振幅最大且相等,如果他们的振幅不等,再调节光电二极管前的透镜,改变入射到光敏面上的光强大小,使近程光束和远程光束的幅值相等。7.缓慢移动导轨上装有正交反射镜的滑块11,改变远程光束的光程,使示波器中两束光的正旋波形完全重合(位相差为2)此时,两路光的光程差等于拍频波长Λ。8.测出拍频波长Λ,并从数字频率计读出高频信号发生器的输出频率F,代入公式(4)求得光速c。反复进行多次测量,并记录测量数据,求出平均值及标准偏差。五、注意事项1.声光频移器引线及冷却铜块不得拆卸。2.切勿用手或其它污物接触光学表面。3.切勿带电触摸激光管电极等高压部位。六、思考题1.什么是光拍频波?2.斩光器的作用是什么?3.为什么采用光拍频法测光速?4.获得光拍频波的两种方法是什么?本实验采取哪一种?5.使示波器上出现两个正旋拍频信号的振幅相等,应如何操作?6.写出光速的计算公式;并说出各量的物理意义?7.分析本实验的主要误差来源,并讨论提高测量精确度的方法。七.附:实验数据频率:F=14.88252MHz,2F=29.76504MHz远程光的光程:151.4+147.4+147.5+148.1+148.0+144.2+5.2+52+5.2+60=1009.0近程光的光程:21.5远程光与近程光的光程差:=1009.0-21.5=987.5光速:c=f=2F=2.93929770×108m/s相对误差:=1.96%