一元二次方程根与系数的关系优质课件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

一元二次方程的根与系数的关系韦达平昌县得胜中学任璟一元二次方程ax2+bx+c=0(a≠0)的求根公式:x=aacbb242(b2-4ac≥0)方程两根两根和X1+x2两根积x1x2x1x2x2-7x+12=0x2+3x-4=03x2-4x+1=02x2+3x-2=0-341271-3-4-4-1-221233134311若一元二次方程ax2+bx+c=0(a≠0)的两根为x1、x2,则21xx.21xx.abac计算并填空aacbbx2421aacbbx2422X1+x2=aacbb242aacbb242+=ab22=ab-X1x2=aacbb242aacbb242●=242)42(2)(aacbb=244aac=ac证明:设ax2+bx+c=0(a≠0)的两根为x1、x2,则一元二次方程的根与系数的关系:如果方程ax2+bx+c=0(a≠0)的两个根是x1,x2,那么x1+x2=,x1x2=ab-ac注:能用公式的前提条件为△=b2-4ac≥0在使用根与系数的关系时,应注意:⑴不是一般式的要先化成一般式;⑵在使用X1+X2=-时,注意“-”不要漏写。ab如果方程x2+px+q=0的两根是X1,X2,那么X1+X2=,X1X2=.-Pq一元二次方程根与系数的关系是法国数学家“韦达”发现的,所以我们又称之为韦达定理.说出下列各方程的两根之和与两根之积:(1)x2-2x-1=0(3)2x2-6x=0(4)3x2=4(2)2x2-3x+=021x1+x2=2x1x2=-1x1+x2=x1+x2=3x1+x2=0x1x2=x1x2=0x1x2=-234134例1、已知方程x2-(k+1)x+3k=0的一个根是2,求它的另一个根及k的值.解法一:设方程的另一个根为x2.由根与系数的关系,得2+x2=k+12x2=3k解这方程组,得x2=-3k=-2答:方程的另一个根是-3,k的值是-2.求一元二次方程的待定系数要验证判别式例1、已知方程x2-(k+1)x+3k=0的一个根是2,求它的另一个根及k的值。解法二:设方程的另一个根为x2.把x=2代入方程,得4-2(k+1)+3k=0解这方程,得k=-2由根与系数的关系,得2x2=3k即2x2=-6∴x2=-3答:方程的另一个根是-3,k的值是-2.求一元二次方程的待定系数要验证判别式例2、方程2x2-3x+1=0的两根记作x1,x2,不解方程,求:(1);(2);(3);(4).2221xx2111xx)1)(1(21xx21xx另外几种常见的求值:2111.1xx2121xxxx)1)(1.(321xx1)(2121xxxx1221.2xxxx212221xxxx21212212)(xxxxxx21.4xx221)(xx212214)(xxxx1、已知方程3x2-19x+m=0的一个根是1,求它的另一个根及m的值。2、设x1,x2是方程2x2+4x-3=0的两个根,求(x1+1)(x2+1)的值.解:设方程的另一个根为x2,319则x2+1=,∴x2=,316又x2●1=,3m∴m=3x2=16解:由根与系数的关系,得x1+x2=-2,x1·x2=23∴(x1+1)(x2+1)=x1x2+(x1+x2)+1=-2+()+1=2325求一元二次方程的待定系数要验证判别式212xx21xx411412则:21xx2221xx221)(xx=221)(xx221)(xx214xx=求与方程的根有关的代数式的值时,一般先将所求的代数式化成含两根之和,两根之积的形式,再整体代入.4.已知方程的两个实数根是且,求k的值.解:由根与系数的关系得x1+x2=-k,x1x2=k+2又x12+x22=4即(x1+x2)2-2x1x2=4K2-2(k+2)=4K2-2k-8=0∵△=K2-4k-8当k=4时,△=-8<0∴k=4(舍去)当k=-2时,△=4>0∴k=-2解得:k=4或k=-2022kkxx2,1xx42221xx求一元二次方程的待定系数要验证判别式6.已知关于x的方程x2+(2m-1)x+m2=0有两个实数根x1、x2.(1)求实数m的取值范围;(2)当x12-x22=0时,求m的值.求一元二次方程的待定系数要验证判别式6.(2013•荆州)已知:关于x的方程kx2-(3k-1)x+2(k-1)=0(1)求证:无论k为何实数,方程总有实数根;(2)若此方程有两个实数根x1,x2,且│x1-x2│=2,求k的值.2、熟练掌握根与系数的关系;3、灵活运用根与系数关系解决问题.1.一元二次方程根与系数的关系?acabaCbxaxxxxxxx2121212.;,)0(0则有的两根分别是如果小结:下列方程的两根的和与两根的积各是多少?⑴.X2-3X+1=0⑵.3X2-2X=2⑶.2X2+3X=0⑷.3X2=13).1(21xx121xx32).2(21xx23).3(21xx0).4(21xx3221xx3121xx021xx基本知识在使用根与系数的关系时,应注意:⑴不是一般式的要先化成一般式;⑵在使用X1+X2=-时,注意“-”不要漏写.ab练习1已知关于x的方程012)1(2mxmx当m=时,此方程的两根互为相反数.当m=时,此方程的两根互为倒数.-11分析:1.0121mxx2.11221mxx练习2(1)设的两个实数根为则:的值为()A.1B.-1C.D.012xx21,xx2111xx555A练习三2,510,abaa若是不相等的实数,且211510,33bbab求的值。以为两根的一元二次方程(二次项系数为1)为:0)(21212xxxxxx2,1xx二、已知两根求作新的方程练习:1.以2和-3为根的一元二次方程(二次项系数为1)为:062xx题5以方程X2+3X-5=0的两个根的相反数为根的方程是()A、y2+3y-5=0B、y2-3y-5=0C、y2+3y+5=0D、y2-3y+5=0B分析:设原方程两根为则:21,xx5,32121xxxx新方程的两根之和为3)()(21xx新方程的两根之积为5)()(21xx题6已知两个数的和是1,积是-2,则两个数是。2和-1解法(一):设两数分别为x,y则:1yx2yx{解得:x=2y=-1{或x=-1y=2{解法(二):设两数分别为一个一元二次方程的两根则:022aa求得1,221aa∴两数为2,-1三已知两个数的和与积,求两数题7如果-1是方程的一个根,则另一个根是___m=____。(还有其他解法吗?)022mxx-3四求方程中的待定系数求一元二次方程的待定系数要验证判别式小结:1、熟练掌握根与系数的关系;2、灵活运用根与系数关系解决问题;3、探索解题思路,归纳解题思想方法。8、已知关于X的方程mx2-(2m-1)x+m-2=0(m﹥0)(1)此方程有实数根吗?(2)如果这个方程的两个实数根分别为x1,x2,且(x1-3)(x2-3)=5m,求m的值。求一元二次方程的待定系数要验证判别式题9方程有一个正根,一个负根,求m的取值范围。解:由已知,0)1(442mmm△=0121mmxx{即{m0m-10∴0m1)0(0122mmmxmx求一元二次方程的待定系数要验证判别式一正根,一负根△>0X1X2<0两个正根△≥0X1X2>0X1+X2>0两个负根△≥0X1X2>0X1+X2<0{{{求一元二次方程的待定系数要验证判别式请阅读下列材料:问题:已知方程x2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y,则y=2x,所以x=.把x=代入已知方程,得()2+-1=0.化简,得y2+2y-4=0.故所求方程为y2+2y-4=0.这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式);(1)已知方程x2+x-2=0,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为_________________;(2)已知关于x的一元二次方程ax2+bx+c=0(a≠0)有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.2y2y2y2y

1 / 34
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功