立体几何垂直证明-教师

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

立体几何垂直证明题常见模型及方法垂直转化:线线垂直线面垂直面面垂直;基础篇类型一:线线垂直证明(共面垂直、异面垂直)(1)共面垂直:实际上是平面内的两条直线的垂直(只需要同学们掌握以下几种模型)○1等腰(等边)三角形中的中线○2菱形(正方形)的对角线互相垂直○3勾股定理中的三角形○41:1:2的直角梯形中○5利用相似或全等证明直角。例:在正方体1111ABCDABCD中,O为底面ABCD的中心,E为1CC,求证:1AOOE(2)异面垂直(利用线面垂直来证明,高考中的意图)例1在正四面体ABCD中,求证ACBD变式1如图,在四棱锥ABCDP中,底面ABCD是矩形,已知60,22,2,2,3PABPDPAADAB.证明:ADPB;变式2如图,在三棱锥PABC中,⊿PAB是等边三角形,∠PAC=∠PBC=90º证明:AB⊥PC类型二:线面垂直证明方法○1利用线面垂直的判断定理例2:在正方体1111ABCDABCD中,O为底面ABCD的中心,E为1CC,求证:1AOBDE平面变式1:在正方体1111ABCDABCD中,,求证:11ACBDC平面变式2:如图:直三棱柱ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90.E为BB1的中点,D点在AB上且DE=3.求证:CD⊥平面A1ABB1;变式3:如图,在四面体ABCD中,O、E分别是BD、BC的中点,2,2.CACBCDBDABAD求证:AO平面BCD;DACOBEPCBADE变式4如图,在底面为直角梯形的四棱锥PABCD中,ADBC∥,90ABC°,PA平面ABCD.3PA,2AD,23AB,6BC1求证:BD平面PAC○2利用面面垂直的性质定理例3:在三棱锥P-ABC中,PAABC底面,PACPBC面面,BCPAC求证:面。方法点拨:此种情形,条件中含有面面垂直。变式1,在四棱锥PABCD,底面ABCD是正方形,侧面PAB是等腰三角形,且PABABCD面底面,求证:BCPAB面类型3:面面垂直的证明。(本质上是证明线面垂直)例1如图,已知AB平面ACD,DE平面ACD,△ACD为等边三角形,2ADDEAB,F为CD的中点.(1)求证://AF平面BCE;(2)求证:平面BCE平面CDE;例2如图,在四棱锥PABCD中,PA底面ABCD,60ABADACCDABC,,°,PAABBC,E是PC的中点.(1)证明CDAE;(2)证明PD平面ABE;变式1已知直四棱柱ABCD—A′B′C′D′的底面是菱形,60ABC,E、F分别是棱CC′与BB′上的点,且EC=BC=2FB=2.(1)求证:平面AEF⊥平面AA′C′C;ABCDEFABCDPE练习:1.设M表示平面,a、b表示直线,给出下列四个命题:①MbMaba//②baMbMa//③baMab∥M④baMa//b⊥M.其中正确的命题是()A.①②B.①②③C.②③④D.①②④2.下列命题中正确的是()A.若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面B.若一条直线垂直于一个平面内的无数条直线,则这条直线垂直于这个平面C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线D.若一条直线垂直于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面3.如图所示,在正方形ABCD中,E、F分别是AB、BC的中点.现在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三点重合,重合后的点记为P.那么,在四面体P—DEF中,必有()A.DP⊥平面PEFB.DM⊥平面PEFC.PM⊥平面DEFD.PF⊥平面DEF4.设a、b是异面直线,下列命题正确的是()A.过不在a、b上的一点P一定可以作一条直线和a、b都相交B.过不在a、b上的一点P一定可以作一个平面和a、b都垂直C.过a一定可以作一个平面与b垂直D.过a一定可以作一个平面与b平行5.如果直线l,m与平面α,β,γ满足:l=β∩γ,l∥α,mα和m⊥γ,那么必有()A.α⊥γ且l⊥mB.α⊥γ且m∥βC.m∥β且l⊥mD.α∥β且α⊥γ6.AB是圆的直径,C是圆周上一点,PC垂直于圆所在平面,若BC=1,AC=2,PC=1,则P到AB的距离为()A.1B.2C.552D.5537.有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l有且仅有一个平面与α垂直;③异面直线a、b不垂直,那么过a的任一个平面与b都不垂直其中正确命题的个数为()A.0B.1C.2D.38.d是异面直线a、b的公垂线,平面α、β满足a⊥α,b⊥β,则下面正确的结论是()A.α与β必相交且交线m∥d或m与d重合B.α与β必相交且交线m∥d但m与d不重合C.α与β必相交且交线m与d一定不平行D.α与β不一定相交9.设l、m为直线,α为平面,且l⊥α,给出下列命题①若m⊥α,则m∥l;②若m⊥l,则m∥α;③若m∥α,则m⊥l;④若m∥l,则m⊥α,其中真命题...的序号是()A.①②③B.①②④C.②③④D.①③④10.已知直线l⊥平面α,直线m平面β,给出下列四个命题:①若α∥β,则l⊥m;②若α⊥β,则l∥m;③若l∥m,则α⊥β;④若l⊥m,则α∥β.其中正确的命题是()A.③与④B.①与③C.②与④D.①与②第3题图二、能力提高14.如图所示,三棱锥V-ABC中,AH⊥侧面VBC,且H是△VBC的垂心,BE是VC边上的高.(1)求证:VC⊥AB;(2)若二面角E—AB—C的大小为30°,求VC与平面ABC所成角的大小.15.如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面PAD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.16.如图所示,在四棱锥P—ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,AD=2,侧棱PB=15,PD=3.(1)求证:BD⊥平面PAD.(2)若PD与底面ABCD成60°的角,试求二面角P—BC—A的大小.17.已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=6,M是CC1的中点,求证:AB1⊥A1M.18.如图所示,正方体ABCD—A′B′C′D′的棱长为a,M是AD的中点,N是BD′上一点,且D′N∶NB=1∶2,MC与BD交于P.(1)求证:NP⊥平面ABCD.(2)求平面PNC与平面CC′D′D所成的角.(3)求点C到平面D′MB的距离.第14题图第15题图第16题图第18题图_A_B_D_C_O_A_B_D_C_O空间中的计算基础技能篇类型一:点到面的距离方法1:直接法—把点在面上的射影查出来,然后在直角三角形中计算例1:在正四面体ABCD中,边长为a,求点A到面BCD的距离。变式1在正四棱锥V-ABCD中,底面ABCD边长为a,侧棱长为b.求顶点V到底面ABCD的距离。变式2在正四棱锥V-ABCD中,底面ABCD边长为a,侧棱长为b.求顶点A到底面VCD的距离。方法2:等体积法求距离---在同一个三棱锥中利用体积不变原理,通过转换不同的底和高来达到目的。例2已知在三棱锥V—ABC中,VA,VB,VC两两垂直,VA=VB=3,VC=4,求点V到面ABC的距离。变式1:如图所示的多面体是由底面为ABCD的长方体被截面1AECF所截而得到的,其中14,2,3,1ABBCCCBE.(1)求BF的长;(2)求点C到平面1AECF的距离.变式2如图,在四棱锥ABCDO中,底面ABCD是四边长为1的菱形,4ABC,OA面ABCD,2OA,.求点B到平面OCD的距离.变式3在正四面体ABCD中,边长为a,求它的内切求的半径。类型二:其它种类的距离的计算(点到线,点到点)例3如图,在四棱锥ABCDO中,底面ABCD是四边长为1的菱形,4ABC,OA面ABCD,2OA,M为OC的中点,求AM和点A到直线OC的距离.习题:1.正三棱锥P-ABC高为2,侧棱与底面所成角为45,则点A到侧面PBC的距离是A.54B.56C.6D.642.如图,已知正三棱柱111ABCABC的底面边长为1,高为8,一质点自A点出发,沿着三棱柱的侧面绕行两周..到达1A点的最短路线的长为A.10B.20C.30D.40二、填空题:3.太阳光照射高为3m的竹竿时,它在水平地面上的射影为1m,同时,照射地面上一圆球时,如图所示,其影子的长度AB等于33cm,则该球的体积为_________.4.若一个正三棱柱的三视图如下图所示,则这个正三棱柱的高和底面边长分别为___.三、解答题:5.已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为1,M是底面BC边上的中点,N是侧棱CC1上的点,且CN=2C1N.求点B1到平面AMN的距离.6.一个多面体的直观图及三视图如图所示:(其中M、N分别是AF、BC的中点).(1)求证:MN∥平面CDEF;(2)求多面体A—CDEF的体积.7.一个多面体的直观图和三视图如图所示,其中M、N分别是AB、AC的中点,G是DF上的一动点.(1)求证:;ACGN(2)当FG=GD时,在棱AD上确定一点P,使得GP//平面FMC,并给出证明.主视图俯视图232左视图aaa俯视图左视图主视图GEFNMDCBA8.如图,已知正四棱锥ABCDS,设E为AB的中点,F为SC的中点,M为CD边上的点.(1)求证://EF平面SAD;(2)试确定点M的位置,使得平面EFM底面ABCD.9一个多面体的直观图、主视图、左视图、俯视图如图所示,M、N分别为BA1、11CB的中点.(1)求证://MN平面11AACC;(2)求证:MN平面BCA1.(3)求点A到面ANM的距离10正四棱柱ABCD—A1B1C1D1中,底面边长为22,侧棱长为4.E,F分别为棱AB,BC的中点,EF∩BD=G.(Ⅰ)求证:平面B1EF⊥平面BDD1B1;(Ⅱ)求点D1到平面B1EF的距离d;(Ⅲ)求三棱锥B1—EFD1的体积V.11.在三棱锥S—ABC中,∠SAB=∠SAC=∠ACB=90°,且AC=BC=5,SB=55.(如图9—21)(Ⅰ)证明:SC⊥BC;(Ⅱ)求侧面SBC与底面ABC所成二面角的大小;(Ⅲ)求三棱锥的体积VS-ABC.BAACAC1AB1AA1AMNaaaaaaa2主视图左视图俯视图SBCFDAEO图9—21第4课线面垂直习题解答1.A两平行中有一条与平面垂直,则另一条也与该平面垂直,垂直于同一平面的两直线平行.2.C由线面垂直的性质定理可知.3.A折后DP⊥PE,DP⊥PF,PE⊥PF.4.D过a上任一点作直线b′∥b,则a,b′确定的平面与直线b平行.5.A,m⊥γ且mα,则必有α⊥γ,又因为l=β∩γ则有lγ,而m⊥γ则l⊥m,故选A.6.DP作PD⊥AB于D,连CD,则CD⊥AB,AB=522BCAC,52ABBCACCD,∴PD=55354122CDPC.7.D由定理及性质知三个命题均正确.8.A显然α与β不平行.9.D垂直于同一平面的两直线平行,两条平行线中一条与平面垂直,则另一条也与该平面垂直.10.B∵α∥β,l⊥α,∴l⊥m11.23cm2设正三角A′B′C′的边长为a.∴AC2=a2+1,BC2=a2+1,AB2=a2+4,又AC2+BC2=AB2,∴a2=2.S△A′B′C′=23432acm2.12.在直四棱柱A1B1C1D1—ABCD中当底面四边形ABCD满足条件AC⊥BD(或任何能推导出这个条件的其它条件,例如ABCD是正方形,菱形等)时,有A1C⊥B1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形).点评:本题为探索性题目,由此题开辟了填空题有探索性题的新题型,此题实质考查了三垂线定理但答案不惟一,要求思维应灵活.13.V

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功