第二章:大气环境化学当前三大全球环境问题:气候变化、酸沉降、臭氧层损耗都发生在大气圈内重点内容:(1)污染物在大气中的迁移气象基础:大气垂直分层、气象要素、气温绝热变化、大气稳定度、大气混合层污染物迁移影响因素:混合层、地形、逆温、山谷风、海陆风等污染物迁移的数学模式:推导与应用(2)污染物在大气中的转化光化学反应基础自由基反应和来源氮氧化物和碳氢化合物、硫氧化合物的转化(3)几种代表性的大气环境污染问题酸雨,光化学烟雾,温室效应,全球变暖臭氧层破坏第一节、污染物在大气中的迁移一、大气垂直分层二、基本气象要素三、气块的绝热过程和干绝热递减率四、大气稳定度五、逆温六、局地环流对污染物扩散的影响迁移:污染物由于空气的运动而使其传输和分散的过程。原因:空气运动形成风,风的形成主要是由于温度差异引起的。所以大气中温度的差异是空气运动的动力源。1、对流层:平均厚度12km,赤道19km,两极8-9km,云雨主要发生层,夏季厚,冬季薄。特点:(1)气温随高度升高而降低。(2)空气密度大。(3)天气复杂多变。(4)对流层下部湍流。一、大气垂直分层:1962,WMO,对流层、平流层、中间层、热成层、逸散层。特点:(1)空气基本无对流,平流运动占显著优势。(2)空气比下层稀薄,水汽、尘埃含量很少,很少有天气现象,透明度极高。(3)在15-35km的范围内(平流层上层),厚度约20km的臭氧层。2、平流层:对流层顶到约50km的地方3、中间层从平流层顶到约85km的高度。(1)空气更稀薄(2)无水分(3)温度随高度增加而降低,中间层顶,气温最低(-100℃)(4)中间层中上部,气体分子(O2、N2)开始电离。4、热(成)层从80km到约800km的地方(1)温度随高度增加迅速增高;(2)大气更为稀薄;(3)大部分空气分子被电离成为离子和自由电子,又称电离层,可以反射无线电波5、逸散层(1)800km以上高空(2)空气稀薄,密度几乎与太空相同(3)空气分子受地球引力极小,所以气体及其微粒可以不断从该层逃逸出去二、基本气象要素气温、气压、湿度、风、云量1、气温•一般气象中采用的气温是指离地面1.5m高度处百叶箱中观测到的空气温度。•大气预测模型中使用的气温一般也是指该温度。•气温在水平方向的差异导致气流水平方向运动的动力,形成风,能够稀释和迁移污染物•气温在垂直方向的差异导致气流的上下强烈对流,有利于形成降水,能够冲刷污染物。2、气压:初始状态:地面处高度0:压强p1=ρgz高度增加△z,则高度△z处:压强p2=ρg(z-△z)所以,得到:P2-P1=△p=-ρg△z转化为微分形式则:(1)(ρ密度g/m3,空气=1.29g/L,g重力加速度9.8m/s2)。另外,气象学上用比气体常数来表示状态方程,其推导过程为:pv=nRT=(令)=(2)gdzdpMmRTpvMRTMRTvmpMRRTRp其中R=8.314J.mol-1.K-1,M气体摩尔质量(空气的摩尔体积为22.4l.mol-1,空气密度=1.29g.l-1,所以M=22.4*1.29=28.869gmol-1),所以R’=R/M=287J.kg-1.K-1。由(1)和(2)得到:=====(3)可见只要知道温度随高度的分布函数形式,就可以推得气压随高度的变化函数形式。gdzdpTRpgdzTRgdzTRgpdp1dzTRgpdp1dzTRgpp1ln0dzTRgpp1exp0风玫瑰图(m/s)3、风水平方向的空气运动,垂直方向则称为对流或升降气流。一般用风向、风速来表示风的特征风向一般用16个方位表示,(ESWN)风速是单位时间内空气在水平方向移动的距离(m/s)一般风速是地面以上10m处风速仪观测得到的平均值4、云大气中水汽凝结的产物一般用云量、云高来确定大气稳定度云高:云层底部距离地面的高度,高云(5000m)中云(2500-5000m)低云(2500m)云量:云遮蔽天空的成数。将可见天空分为10份,被云遮挡了几份,云量就是几。晴空无云,云量为0,乌云遮天,云量为10.三、气块的绝热过程和干绝热递减率1、气团运动的绝热过程空气移动,高压区→低压,膨胀降温,压缩升温。当气团在水平方向运动,非绝热过程。当气团作垂直升降运动时,近似为绝热过程。高温暖气团倾向于从地表移动到低压的高处,气团绝热膨胀并降温。若没有水汽凝结,冷却速率为0.98℃/100m,称为温度的干绝热递减率(rd)。然而,一般气团中都含有水蒸气,冷凝放潜热,得到温度的垂直递减率(r),冷却速率为0.65℃/100m。当污染源排放的污染刚进入大气环境的时候,可视为一个绝热过程。膨胀降温20℃压缩升温21℃温度垂直递减率,干绝热递减率2、气团运动的绝热方程根据热力学第一定律:dq=du+dw(q—外界加于体系的热量,u—体系内能变化,w—体系对外做功)绝热过程中:外界加于体系的热量dq=0体系对外做功dw=pdv(体系膨胀或压缩)体系内能变化du=nCvdT(体积不变情况下,内能变化,定容比热Cv)所以:pdv=-nCvdT(4)又由于pv=nRT,取全微分得到:pdv+vdp=nRdT(5)由(4)和(5)可得:nRdT—vdp=pdv=-nCvdT即:===根据迈耶定律:R+Cv=Cp(定压比热,压力不变情况下,体系内能变化,Jmol-1K-1)所以:nCvdTdppnRTnRdTdppnRTnCvdTnRdTdppRTCvdTRdTpdpRTdTCvR)(pdpRTdTCp===对于空气R=287Jmol-1K-1Cp=996.5Jmol-1K-1所以:3、干绝热递减率气团干绝热升高或降低单位距离时,温度降低或升高的数值,称为干绝热递减率:推导过程:rd=-因为:(干绝热方程)2121pppTTpdpCRTdT1212lnlnppCRTTppCRppTT1212286.01212ppTTddzdTpdpCRTdTp所以rd=-=又因为所以:rd==又由于p=ρRT故rd===0.98K/100m(1N=1kgms-2,1J=1Nm)dpdpdzdppCRTdzpdpCRT11gdzdpdpgpCRT1dpCgpRTpCg11221121125.9968.95.9968.95.9968.9KmkgkgmsmsKNmkgmsKJkgmsddzdT干绝热递减率常数的推导四、大气稳定度大气稳定度:是指大气中某一高度上的气块在垂直方向上相对稳定的程度。根据大气垂直递减率(r)和干绝热递减率(rd)的对比关系,可以确定大气稳定度。稳定:气团离开原来位置后有回归的趋势(rrd)不稳定:气团离开原来位置后有继续离开的趋势(rrd)中性:介于上述两种情况之间(r=rd)注意其中rd基本为不变常数0.98k/100m,r则可能变化很大。解释:当rrd时,气团离开原来位置上升到某一高度时,由于rrd,所以气团内降温(速率为rd)要比气团外降温(速率为r)幅度大,相同起始温度情况下,气团内温度会比气团外温度低,所以气团有回归趋势。当r〉rd时,气团离开原来位置上升到某一高度时,由于r〉rd,所以气团内降温(速率为rd)要比气团外降温(速率为r)幅度小,相同起始温度情况下,气团内温度会比气团外温度高,所以气团有继续移动离开趋势。rrd稳定rrd不稳定五、逆温由于上述,可见大气的垂直温度递减率越大,则大气就越不稳定,r与rd的关系可表示为:rd=0.980.00不稳定稳定中性超稳定(逆温)一般大气层越稳定,则越不利于污染物的扩散而逆温则使大气的温度变化逆转,随着高度升高,温度也升高(r0),这将会使大气的状态更为稳定,更加明显地不利于污染物的扩散,所以逆温成为大气污染气象学中的重要研究内容。r几种常见典型逆温的形成1、辐射逆温(最常见地面逆温)地面辐射出大量的热量后,温度过度降低。晴朗无云,无风夜晚,没有云层阻挡,地面辐射丧失大量能量,温度降低过多,易于形成辐射逆温(地面冷);若风速在2-3m/s,辐射逆温不易形成,若风速大于6m/s,则可完全阻止辐射逆温的形成,这是由于风带来气流运动,使外界较暖气团运动过来后补充了当地地面辐射的热量损失。2、下沉逆温(地面逆温)下沉压缩增温效应引起,一般上升降温,下沉增温;hh’HH’气团下沉过程中,由于受到压缩,顶部下降距离大,增温多,底部下降距离相对小,增温少,因此形成顶部温度高,底部温度低的气团。因为hh’,所以HH’3、湍流逆温(高空逆温)低层空气湍流混合而上层空气未混合情况下发生的高空逆温。在下部湍流层,气团上升过程中,温度按干绝热递减率(rd)变化,上升到一定高度后,其温度低于周围环境温度(这样它才不继续上升,而有返回趋势,形成湍流),这样下部湍流层的温度会低于上部未湍流层低部的温度,从而形成高空湍流逆温。六、局地环流对污染物扩散的影响海洋和大陆在白天和夜间的热力差异,导致的白天和夜间海洋和陆地之间的风向转换。白天:海风,夜晚:陆风对污染扩散的影响:白天海风吹向陆地,海风处于下层,温度较低,易于形成逆温。夜间陆风吹向海洋,陆风处于下层,温度和海洋差别不大,不易形成逆温易造成污染物往返,海陆风转换期间,原随陆风吹向海洋的污染物又会被吹会陆地。循环作用,如果污染源处于海路风交界处,并处于局地环流,则污染物很难扩散出去,并不断累积达到很高的浓度。1、海陆风2、城郊风主要动力是城市热岛效应造成的城市空气从上层流向郊区,郊区温度较低的空气从下部流向城市,形成城市和郊区间的大气局地环流。使得污染物在城区很难扩散出去,形成城市烟幕,导致市区大气污染加剧。郊区城市郊区3、山谷风白天:山坡升温快,山坡气流快速上升,空气由谷底补充山坡——谷风夜间:山坡降温快,山坡冷空气流向谷底——山风处于山谷地区的污染源很难扩散,早期一些大气污染事件都发生在山区,马斯河谷烟雾事件。如今人们认识到这一常识,山区成为旅游胜地,而不再是建造工业企业的胜地。