343Vol.34No.320123InfraredTechnologyMar.2012 168 FTIR 230031FTIRFTIRFTIRO433.4 A 1001-8891(2012)03-0168-05 ApplicationofFourierTransformInfraredSpectroscopyBasedonSunSpectrumtoMonitortheDistributionofPropylenefromPetrochemicalIndustryFENGShu-xiangXULiangGAOMin-guangCHENGSi-yangJINLingFENGMing-chunLIXiang-xianKeyLaboratoryofEnvironmentalOpticsandTechnologyAnhuiInstituteofOpticsandFineMechanics,ChineseAcademyofScienceHefei230031ChinaAbstractInthepaper,anewmethodisintroducedforreal-timemonitoringthecolumnconcentrationofpropylenefrompetrochemicalindustry,whichisbasedonthetechniqueofFourierTransformInfraredSpectroscopy(FTIR)byusingsunspectrum.Theretrievalalgorithmoftheconcentrationsofpollutedgasesbasedonnonlinearleastsquaresisproposed.Continuousmeasurementssurroundingthepre-monitoringcontaminatedareasareperformedwithaclosedloopbyusingself-developedvehicularFTIRsystemtoobtaintheregionalbackgroundreferencespectrum,measuredspectrum,whileapplicationofasimplifiedgasradiativetransmissionmodeltocalculateatmospherictransmittancespectrum,andfinallyusingthenonlinearleastsquaresfittingalgorithmforatmospherictransmittancespectrumtoachievethecolumnconcentrationofpropylenesurroundingpollutedareas.Usingthismethod,remotesensingexperimentofpropyleneinShanghaiGaoqiaopetrochemicalzonewasdone.Theexperimentalresultshowsthatthemeasuredcolumnconcentrationdistributionofpropylenewellreflectsthepollutant’semissionanddispersionandprovestheavailabilityofthevehicularFTIRtechnologyinmonitoringregionalgaspollution.Keywordspropylenepassivedetectioninfraredspectroscopycolumnconcentration0 2012-01-11 2012-2-22 .1986-No.40905011No.41105022(Y0220911310)343Vol.34No.320123FTIRMar.201216938.91%45.81%[1]FTIR[2][3]FTIRFTIR[4]FTIRFTIRFTIR22.1[5,6]iIi(v)1iiiiiiiIBTI(1)i(v)iBi(vTi)iTii(v)iIi1(v)i1i(v)i1iii(2)i(v)i(v)i(v)Kirchhoff(2)(1)11-iiiiiiIBTI(3)T(1i(v))Bi(v,Ti)i(v)6000K1Ii(v)Bi(v,Ti)(1i(v))Bi(v,Ti)1iiII(4)2.2Beer-Lambert**0e*NLII(5)I(v)I0(v)NL(4)(5)**eNL(6)2.3[7][8]Beer-Lambert’(v)343Vol.34No.320123InfraredTechnologyMar.2012170X2[9]22'minX(7)’(v)(v)33.1FTIRGPS1cm16005000cm1GPS3.23.5m/s20km/h1I0(v)’I(v)1HeHH(8)HH1FTIRFig.1Twolayersofvehicle-mountedFTIRmeasurementmodel3.321m1ppm840950cm1330.41121.178408608809009209400.000.010.02AbsorbanceWavenumber(cm-1)2Fig.2Standardabsorptioncross-sectionspectrumofpropylene4a34b4c55343Vol.34No.320123FTIRMar.20121710100020003000400050000.00.51.01.52.02.53.0RelativeIntensityWavenumber(cm-1)3Fig.3Actualmeasurementofinfraredspectrum840860880900920940-0.10.00.10.20.30.40.50.60.70.80.91.01.1TransmissionWavenumber(cm-1)4abcFig.4Measuredtransmittance,fittedtransmittanceandresidualerror5Fig.5ColumnconcentrationdistributionofpropylenesurroundingGaoqiaopetrochemicalindustryinShanghai304154.061211717.47FTIR3.4bca343Vol.34No.320123InfraredTechnologyMar.20121724FTIR[1],.[J].,2008,2(19):27-29[2].[J].2010,30(6):1656-1661.[3],,.5[J].,2011,28(1):79-81.[4],,.FTIR[J].,2008,28(10):2304-2307[5],,.NO2[J].,2000,49(12):2507-2513.[6]D.W.T.Griffith,N.B.Jones,B.McNamaraetal.IntercomparisonofNDSCground-basedsolarFTIRmeasurementsofatmosphericgasesatLauder,NewZealand[J].JournalofAtmosphericandOceanicTechnology,2003,20:1138-1153.[7]I.R.Johansen,G.T.Lines,A.Honne,T.Midtgaard,CalibrationofanFTIRSpectrometerforAmbientAirMonitoringUsingPLS[J].Appl.Spectrosc,1997,51(10):1540-1546.[8]T.L.Marshall,C.T.Chaffin,V.D.Makepeaceetal.Investigationoftheeffectsofresolutionontheperformanceofclassicalleast-squares(CLS)spectralinterpretationprogramswhenappliedtovolatileorganiccompounds(VOCS)ofinterestinremotesensingusingopen-airlong-pathFourierTransformInfrared(FTIR)Spectrometry[J].JournalofMolecularStructure,1994,324(2):19-28.[9]E.Niple.NonlinearLeastSquaresAnalysisofAtmosphericAbsorptionSpectra[J].Appl.Opt,1980,19(20):3481-3490.167[4].[D].:,2006:33-34.[5],.[J].,1995,9(3):6-9.[6],,.[J].,2002(4):283-286.[7],.[J].,2001(9):16-17.[8].[J].,2008(4):1-8.[9],,.PV[J].,2007(6):106-108.[10],,.[J].,2004,33(1):1-4.[11],,.[M]..:,2004:42-43.