12.1.1离散型随机变量高二数学选修2-32复习引入:1、什么是随机事件?什么是基本事件?在一定条件下可能发生也可能不发生的事件,叫做随机事件。试验的每一个可能的结果称为基本事件。2、什么是随机试验?凡是对现象或为此而进行的实验,都称之为试验。如果试验具有下述特点:试验可以在相同条件下重复进行;每次试验的所有可能结果都是明确可知的,并且不止一个;每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果。它被称为一个随机试验。简称试验。3思考1:掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示,那么掷一枚硬币的结果是否也可以用数字来表示呢?正面向上1反面向上0又如:一位篮球运动员3次投罚球的得分结果可以用数字表示吗?问:任何随机试验的所有结果都可以用数字表示吗?本质是建立了一个从试验结果到实数的对应关系。41、随机变量随着试验结果变化而变化的变量称为随机变量。常用字母表示。XY、、、问题:1、对于掷骰子试验,可以定义不同的随机变量来表示这个试验结果吗?2、在掷骰子试验中,如果我们仅关心掷出的点数是否为偶数,应如何定义随机变量?Y=0,掷出奇数点1,掷出偶数点附:随机变量ξ或η的特点:(1)可以用数表示;(2)试验之前可以判断其可能出现的所有值;(3)在试验之前不可能确定取何值。5思考2:随机变量与函数有类似的地方吗?随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数。在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域。我们把随机变量的取值范围叫做随机变量的值域。例如,在含有10件次品的100件产品中,任意抽取4件,可能含有的次品件数X将随着抽取结果的变化而变化,是一个随机变量。其值域是{0,1,2,3,4}.6利用随机变量可以表达一些事件。你能说出{X3}在这里表示什么事件吗?“抽出3件以上次品”又如何用X表示呢?例如{X=0}表示“抽出0件次品”;{X=4}表示“抽出4件次品”;72、离散型随机变量所有取值可以一一列出的随机变量,称为离散型随机变量。如果随机变量可能取的值是某个区间的一切值,这样的随机变量叫做连续型随机变量.思考3:(1)电灯泡的寿命X是离散型随机变量吗?(2)如果规定寿命在1500小时以上的灯泡为一等品,寿命在1000到1500小时之间的为二等品,寿命在1000小时以下的为不合格品。如果我们关心灯泡是否为合格品,应如何定义随机变量?如果我们关心灯泡是否为一等品或二等品,又如何定义随机变量?8例1、(1)某座大桥一天经过的中华轿车的辆数为;(2)某网站中歌曲《爱我中华》一天内被点击的次数为;(3)一天内的温度为;(4)射手对目标进行射击,击中目标得1分,未击中目标得0分,用表示该射手在一次射击中的得分。上述问题中的是离散型随机变量的是()A.(1)(2)(3)(4)B.(1)(2)(4)C.(1)(3)(4)D.(2)(3)(4)例2、写出下列随机变量可能的取值,并说明随机变量所取的值表示的随机试验的结果:(1)一个袋中装有2个白球和5个黑球,从中任取3个,其中所含白球的个数;(2)一个袋中装有5个同样大小的球,编号为1,2,3,4,5,现从中随机取出3个球,被取出的球的最大号码数。92.1.2离散型随机变量的分布列(1)高二数学选修2-310引例抛掷一枚骰子,所得的点数有哪些值?取每个值的概率是多少?解:6161616161)4(P)2(P)3(P)5(P)6(P61)1(P则P126543616161616161⑵求出了的每一个取值的概率.⑴列出了随机变量的所有取值.的取值有1、2、3、4、5、611二、离散型随机变量的分布列1、设随机变量的所有可能的取值为则称表格123,,,,,,inxxxxx的每一个取值的概率为,ix(1,2,,)iniipxP)(P1xix2x······1p2pip······为随机变量的概率分布,简称的分布列.注:1、分布列的构成⑴列出了随机变量的所有取值.⑵求出了的每一个取值的概率.2、分布列的性质⑴,2,1,0ipi⑵121pp有时为了表达简单,也用等式表示的分布列(),1,2,3,...,iiPxpin122.概率分布还经常用图象来表示.O12345678p0.10.21、离散型随机变量的分布列完全描述了由这个随机变量所刻画的随机现象。2、函数可以用解析式、表格或图象表示,离散型随机变量可以用分布列、等式或图象来表示。可以看出的取值范围是{1,2,3,4,5,6},它取每一个值的概率都是。1613例如:抛掷两枚骰子,点数之和为ξ,则ξ可能取的值有:2,3,4,……,12.ξ的概率分布为:ξ23456789101112p36136136236236336336436436536536614例1:某一射手射击所得环数ξ的分布列如下:ξ45678910P0.020.040.060.090.280.290.22求此射手”射击一次命中环数≥7”的概率.分析:”射击一次命中环数≥7”是指互斥事件”ξ=7”,”ξ=8”,”ξ=9”,”ξ=10”的和.例2.随机变量ξ的分布列为ξ-10123p0.16a/10a2a/50.3求常数a15例3:一袋中装有6个同样大小的小球,编号为1、2、3、4、5、6,现从中随机取出3个小球,以表示取出球的最大号码,求的分布列.解:”3“表示其中一个球号码等于“3”,另两个都比“3”小∴)3(P121236CCC201”4“∴)4(P121336CCC203”5“∴)5(P121436CCC103”6“∴)6(P121536CCC21∴随机变量的分布列为:P654320120310321的所有取值为:3、4、5、6.表示其中一个球号码等于“4”,另两个都比“4”小表示其中一个球号码等于“5”,另两个都比“5”小表示其中一个球号码等于“3”,另两个都比“3”小说明:在写出ξ的分布列后,要及时检查所有的概率之和是否为1.16课堂练习:2、设随机变量的分布列为则的值为.,31)(iaiP3,2,1ia13271、下列A、B、C、D四个表,其中能成为随机变量的分布列的是()A01P0.60.3B012P0.90250.0950.0025C012…nP…121418112nD012…nP…131233212331233nB17课堂练习:3、设随机变量的分布列如下:123…nPK2K4K…K12n求常数K。4、袋中有7个球,其中3个黑球,4个红球,从袋中任取个3球,求取出的红球数的分布列。18例4:已知随机变量的分布列如下:P-2-13210121611213141121分别求出随机变量⑴21122;⑵的分布列.解:且相应取值的概率没有变化∴的分布列为:1P-11012161121314112121212311⑴由211可得的取值为、21、0、21、1、23119例4:已知随机变量的分布列如下:P-2-13210121611213141121分别求出随机变量⑴21122;⑵的分布列.解:∴的分布列为:2⑵由可得2的取值为0、1、4、9222(1)(1)(1)PPP2(0)(0)PP3111412312(4)(2)(2)PPP11126412(9)(3)PP121P0941213141131220例5、在掷一枚图钉的随机试验中,令1,0,X针尖向上针尖向下如果针尖向上的概率为p,试写出随机变量X的分布列解:根据分布列的性质,针尖向下的概率是(1—p),于是,随机变量X的分布列是:X01P1—pp3、两点分布列象上面这样的分布列称为两点分布列。如果随机变量X的分布列为两点分布列,就称X服从两点分布,而称p=P(X=1)为成功概率。21练习:1、在射击的随机试验中,令X=如果射中的概率为0.8,求随机变量X的分布列。0,射中,1,未射中2、设某项试验的成功率是失败率的2倍,用随机变量去描述1次试验的成功次数,则失败率p等于()A.0B.C.D.121323C22例3:在含有5件次品的100件产品中,任取3件,试求:(1)取到的次品数X的分布列;(2)至少取到1件次品的概率.解:(1)从100件产品中任取3件结果数为3100,C从100件产品中任取3件,其中恰有K件次品的结果为3595kkCC那么从100件产品中任取3件,其中恰好有K件次品的概率为35953100(),0,1,2,3kkCCpXkkCX0123P035953100CCC125953100CCC215953100CCC305953100CCC23一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件产品数,则事件{X=k}发生的概率为*(),0,1,2,,min{,},,,,,knkMNMnNCCPXkkmCmMnnNMNnMNN其中且2、超几何分布X则称随机变量服从超几何分布.记为:xH(n,M,N),X01…mP…00nMNMnNCCC11nMNMnNCCCmnmMNMnNCCC称分布列为超几何分布24例4:在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和个20白球,这些球除颜色外完全相同。一次从中摸出5个球,至少摸到3个红球就中奖。求中奖的概率。例5:袋中有个5红球,4个黑球,从袋中随机取球,设取到一个红球得1分,取到一个黑球得0分,现从袋中随机摸4个球,求所得分数X的概率分布列。练:盒中装有一打(12个)乒乓球,其中9个新的,3个旧的,从盒中任取3个来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量。求X的分布列。25例6:在一次英语口语考试中,有备选的10道试题,已知某考生能答对其中的8道试题,规定每次考试都从备选题中任选3道题进行测试,至少答对2道题才算合格,求该考生答对试题数X的分布列,并求该考生及格的概率。26例7:袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为。现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取到的机会是等可能的,用表示取球终止时所需要的取球次数。(1)求袋中原有白球的个数;(2)求随机变量的概率分布;(3)求甲取到白球的概率。1727练习从1~10这10个数字中随机取出5个数字,令X:取出的5个数字中的最大值.试求X的分布列.kXP具体写出,即可得X的分布列:X5678910P25212525252152523525270252126解:X的可能取值为.1065,,,k5,6,7,8,9,10.并且510C41kC=——求分布列一定要说明k的取值范围!28例8、从一批有10个合格品与3个次品的产品中,一件一件的抽取产品,设各个产品被抽到的可能性相同,在下列两种情况下,分别求出取到合格品为止时所需抽取次数的分布列。(1)每次取出的产品都不放回该产品中;(2)每次取出的产品都立即放回该批产品中,然后再取另一产品。变式引申:1、某射手射击目标的概率为0.9,求从开始射击到击中目标所需的射击次数的概率分布。2、数字1,2,3,4任意排成一列,如果数字k恰好在第k个位置上,则称有一个巧合,求巧合数的分布列。29一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球的个数是绿球个数的两倍,黄球个数是绿球个数的一半,现从该盒中随机取出一球,若取出红球得1分,取出绿球得0分,取出黄球得-1分,试写出从该盒内随机取出一球所得分数ξ的分布列.解:设黄球的个数为n,由题意知绿球个数