数列分组求和法

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

分组求和法典题导入[例1](2011·山东高考)等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.第一列第二列第三列第一行3210第二行6414第三行9818(1)求数列{an}的通项公式;(2)若数列{bn}满足:bn=an+(-1)nlnan,求数列{bn}的前2n项和S2n.[自主解答](1)当a1=3时,不合题意;当a1=2时,当且仅当a2=6,a3=18时,符合题意;当a1=10时,不合题意.因此a1=2,a2=6,a3=18.所以公比q=3,故an=2·3n-1.(2)因为bn=an+(-1)nlnan=2·3n-1+(-1)nln(2·3n-1)=2·3n-1+(-1)n(ln2-ln3)+(-1)nnln3,所以S2n=b1+b2+…+b2n=2(1+3+…+32n-1)+[-1+1-1+…+(-1)2n](ln2-ln3)+[-1+2-3+…+(-1)2n2n]ln3=2×1-32n1-3+nln3=32n+nln3-1.由题悟法分组转化法求和的常见类型(1)若an=bn±cn,且{bn},{cn}为等差或等比数列,可采用分组求和法求{an}的前n项和.(2)通项公式为an=bn,n为奇数,cn,n为偶数的数列,其中数列{bn},{cn}是等比数列或等差数列,可采用分组求和法求和.以题试法1.(2013·威海模拟)已知数列{xn}的首项x1=3,通项xn=2np+nq(n∈N*,p,q为常数),且x1,x4,x5成等差数列.求:(1)p,q的值;(2)数列{xn}前n项和Sn的公式.解:(1)由x1=3,得2p+q=3,又因为x4=24p+4q,x5=25p+5q,且x1+x5=2x4,得3+25p+5q=25p+8q,解得p=1,q=1.(2)由(1),知xn=2n+n,所以Sn=(2+22+…+2n)+(1+2+…+n)=2n+1-2+nn+12.2.数列112,314,518,7116,…的前n项和Sn为().A.n2+1-12n-1B.n2+2-12nC.n2+1-12nD.n2+2-12n-1解析由题意知已知数列的通项为an=2n-1+12n,则Sn=n+2n-2+121-12n1-12=n2+1-12n.答案C3.已知等差数列{an}的前n项和为Sn,且a3=5,S15=225.(1)求数列{an}的通项公式;(2)设bn=2an+2n,求数列{bn}的前n项和Tn.解析:(1)设等差数列{an}的首项为a1,公差为d,由题意,得a1+2d=5,15a1+15×142d=225,解得a1=1,d=2,∴an=2n-1.(2)∵bn=2an+2n=12·4n+2n,∴Tn=b1+b2+…+bn=12(4+42+…+4n)+2(1+2+…+n)=4n+1-46+n2+n=23·4n+n2+n-23.4.设{an}是公比为正数的等比数列,a1=2,a3=a2+4.(1)求{an}的通项公式;(2)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.解析(1)设q为等比数列{an}的公比,则由a1=2,a3=a2+4得2q2=2q+4,即q2-q-2=0,解得q=2或q=-1(舍去),因此q=2.所以{an}的通项为an=2·2n-1=2n(n∈N*)(2)Sn=-2n1-2+n×1+nn-2×2=2n+1+n2-2.5.求和Sn=1+1+12+1+12+14+…+1+12+14+…+12n-1.解和式中第k项为ak=1+12+14+…+12k-1=1-12k1-12=21-12k.∴Sn=21-12+1-122+…+1-12n=2[(1+1+…+1n个-(12+122+…+12n)]=2n-121-12n1-12=12n-1+2n-2.6.数列{an}的前n项和为Sn,a1=1,a2=2,an+2-an=1+(-1)n(n∈N*),则S100=________.答案2600解析由an+2-an=1+(-1)n知a2k+2-a2k=2,a2k+1-a2k-1=0,∴a1=a3=a5=…=a2n-1=1,数列{a2k}是等差数列,a2k=2k.∴S100=(a1+a3+a5+…+a99)+(a2+a4+a6+…+a100)=50+(2+4+6+…+100)=50+100+2×502=2600.7.求和:(1)Sn=32+94+258+6516+…+n·2n+12n;(2)Sn=x+1x2+x2+1x22+…+xn+1xn2.解(1)由于an=n·2n+12n=n+12n,∴Sn=1+121+2+122+3+123+…+n+12n=(1+2+3+…+n)+12+122+123+…+12n=nn+12+121-12n1-12=nn+12-12n+1.(2)当x=±1时,Sn=4n.当x≠±1时,Sn=x+1x2+x2+1x22+…+xn+1xn2=x2+2+1x2+x4+2+1x4+…+x2n+2+1x2n=(x2+x4+…+x2n)+2n+1x2+1x4+…+1x2n=x2x2n-1x2-1+x-21-x-2n1-x-2+2n=x2n-1x2n+2+1x2nx2-1+2n.∴Sn=4nx=±1,x2n-1x2n+2+1x2nx2-1+2nx≠±1.8.已知数列{an}中,a1=-60,an+1=an+3,则这个数列前30项的绝对值的和是________.答案765解析由题意知{an}是等差数列,an=-60+3(n-1)=3n-63,令an≥0,解得n≥21.∴|a1|+|a2|+|a3|+…+|a30|=-(a1+a2+…+a20)+(a21+…+a30)=S30-2S20=-60+90-63×302-(-60+60-63)×20=765.9.数列{an}的前n项和Sn=n2-4n+2,则|a1|+|a2|+…+|a10|=________.答案66解析当n=1时,a1=S1=-1.当n≥2时,an=Sn-Sn-1=2n-5.∴an=-1n=12n-5n≥2.令2n-5≤0,得n≤52,∴当n≤2时,an0,当n≥3时,an0,∴|a1|+|a2|+…+|a10|=-(a1+a2)+(a3+a4+…+a10)=S10-2S2=66.10.数列{an}的通项公式为an=(-1)n-1·(4n-3),则它的前100项之和S100等于()A.200B.-200C.400D.-400答案B解析S100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.11.(2012·课标全国)数列{an}满足an+1+(-1)nan=2n-1,则{an}的前60项和为________.答案1830解析∵an+1+(-1)nan=2n-1,∴a2=1+a1,a3=2-a1,a4=7-a1,a5=a1,a6=9+a1,a7=2-a1,a8=15-a1,a9=a1,a10=17+a1,a11=2-a1,a12=23-a1,…,a57=a1,a58=113+a1,a59=2-a1,a60=119-a1,∴a1+a2+…+a60=(a1+a2+a3+a4)+(a5+a6+a7+a8)+…+(a57+a58+a59+a60)=10+26+42+…+234=15×10+2342=1830.12.已知数列2008,2009,1,-2008,-2009,…这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2013项之和S2013等于()A.1B.2010C.4018D.0答案C解析由已知得an=an-1+an+1(n≥2),∴an+1=an-an-1.故数列的前8项依次为2008,2009,1,-2008,-2009,-1,2008,2009.由此可知数列为周期数列,周期为6,且S6=0.∵2013=6×335+3,∴S2013=S3=4018.13.设221)(xxf,利用课本中推导等差数列前n项和公式的方法,可求)0()4()5(fff)6()5(...ff的值为A.23B.2C.22D.22解:由于22)1()(xfxf,则原式)]5()4([)]6()5({[21ffff)]}5()6([ff23221221,选A14.数列}{na的前n项和为nS,满足:11a,tSttSnn3)32(31,其中0t,Nn且2n(Ⅰ)求证:数列}{na是等比数列;(Ⅱ)设数列}{na的公比为)(tf,数列}{nb满足1111,()(2),nnbbfnb求nb的通项式.(Ⅲ)记,12221254433221nnnnnbbbbbbbbbbbbT求证:.920nT解(Ⅰ)当2n时,tSttSnn3)32(31①,tSttSnn3)32(31②②—①得:0)32(31nnatta1233nnatat(2n)又11211,3()(23)3ataatat,解得:tta3322,nnaaaaaa12312233tt}{na是首项为1,公比为233tt的等比数列。(Ⅱ)32323332,332)(1111nnnnnbbbbbtttf,,321nnbb则313232)1(1nnbn(Ⅲ))()()(12122534312nnnnbbbbbbbbbT920954,32,2)32(949)64(22)31435(34)(3422242nnTnnnnnnnnnbbb为增时当15.22222212979899100的值是A.2525B.5050C.10100D.20200解:原式5050)12()9798()99100(,选B16.等差数列{an}的公差不为零,a4=7,a1,a2,a5成等比数列,数列{Tn}满足条件Tn=a2+a4+a8+…+n2a,则Tn=________.解析:设{an}的公差为d≠0,由a1,a2,a5成等比数列,得a22=a1a5,即(7-2d)2=(7-3d)(7+d)∴d=2或d=0(舍去).∴an=7+(n-4)×2=2n-1.又n2a=2·2n-1=2n+1-1,∴Tn=(22-1)+(23-1)+(24-1)+…+(2n+1-1)=(22+23+…+2n+1)-n=2n+2-n-4.

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功