圆的方程ppt课件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

要点梳理1.圆的定义在平面内,到的距离等于的点的叫圆.2.确定一个圆最基本的要素是和.3.圆的标准方程(x-a)2+(y-b)2=r2(r>0),其中为圆心,为半径.§9.3圆的方程基础知识自主学习集合圆心半径(a,b)r定点定长4.圆的一般方程x2+y2+Dx+Ey+F=0表示圆的充要条件是,其中圆心为,半径r=.5.确定圆的方程的方法和步骤确定圆的方程主要方法是待定系数法,大致步骤为:(1);(2);(3).D2+E2-4F>02,2ED.2422FED根据题意,选择标准方程或一般方程根据条件列出关于a,b,r或D、E、F的方程组解出a、b、r或D、E、F代入标准方程或一般方程6.点与圆的位置关系点和圆的位置关系有三种.圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0)(1)点在圆上:;(2)点在圆外:;(3)点在圆内:.(x0-a)2+(y0-b)2=r2(x0-a)2+(y0-b)2>r2(x0-a)2+(y0-b)2<r2基础自测1.方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a的取值范围是()A.a<-2或a>B.<a<0C.-2<a<0D.-2<a<解析方程x2+y2+ax+2ay+2a2+a-1=0转化为+(y+a)2=a2-a+1,所以若方程表示圆,则有∴3a2+4a-4<0,∴-2<a<.323232D22ax43,01432aa322.圆x2+y2-2x+2y+1=0的圆心到直线x-y+1=0的距离是()A.B.C.D.解析配方得(x-1)2+(y+1)2=1,圆心(1,-1)到直线的距离d=212322223D.22321113.(2009·重庆文,1)圆心在y轴上,半径为1,且过点(1,2)的圆的方程是()A.x2+(y-2)2=1B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1D.x2+(y-3)2=1解析设圆的圆心C(0,b),则=1,∴b=2.∴圆的标准方程是x2+(y-2)2=1.A22)2()10(b4.当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,为半径的圆的方程为()A.x2+y2-2x+4y=0B.x2+y2+2x+4y=0C.x2+y2+2x-4y=0D.x2+y2-2x-4y=0解析直线方程变为(x+1)a-x-y+1=0,∴C(-1,2).∴所求圆的方程为(x+1)2+(y-2)2=5.即x2+y2+2x-4y=0.C5,21,0101yxyxx得由5.过点A(1,-1),B(-1,1),且圆心在直线x+y-2=0上的圆的方程是()A.(x-3)2+(y+1)2=4B.(x+3)2+(y-1)2=4C.(x-1)2+(y-1)2=4D.(x+1)2+(y+1)2=4解析设圆心C的坐标为(a,b),半径为r.∵圆心C在直线x+y-2=0上,∴b=2-a.∵|CA|2=|CB|2,∴(a-1)2+(2-a+1)2=(a+1)2+(2-a-1)2,∴a=1,b=1.∴r=2,∴方程为(x-1)2+(y-1)2=4.C题型一求圆的方程【例1】求与x轴相切,圆心在直线3x-y=0上,且被直线x-y=0截得的弦长为2的圆的方程.由条件可设圆的标准方程求解,也可设圆的一般方程,但计算较繁琐.解方法一设所求的圆的方程是(x-a)2+(y-b)2=r2,则圆心(a,b)到直线x-y=0的距离为,∴r2=题型分类深度剖析7思维启迪2ba,)7(222ba即2r2=(a-b)2+14①由于所求的圆与x轴相切,∴r2=b2.②又因为所求圆心在直线3x-y=0上,∴3a-b=0.③联立①②③,解得a=1,b=3,r2=9或a=-1,b=-3,r2=9.故所求的圆的方程是(x-1)2+(y-3)2=9或(x+1)2+(y+3)2=9.方法二设所求的圆的方程是x2+y2+Dx+Ey+F=0,圆心为半径为令y=0,得x2+Dx+F=0,由圆与x轴相切,得Δ=0,即D2=4F.④又圆心到直线x-y=0的距离为,2,2ED.42122FED2,2ED,222ED由已知,得即(D-E)2+56=2(D2+E2-4F)⑤又圆心在直线3x-y=0上,∴3D-E=0.⑥联立④⑤⑥,解得D=-2,E=-6,F=1或D=2,E=6,F=1.故所求圆的方程是x2+y2-2x-6y+1=0或x2+y2+2x+6y+1=0.,)7(222222rED2,2ED探究提高求圆的方程,一般用待定系数法.圆的一般式和标准式均有三个未知数,合理选择方程形式可以减少运算量,若已知与圆的圆心和半径有关的条件,应优先选择圆的标准形式.知能迁移1(2009·辽宁文,7)已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为()A.(x+1)2+(y-1)2=2B.(x-1)2+(y+1)2=2C.(x-1)2+(y-1)2=2D.(x+1)2+(y+1)2=2解析由题意可设圆心坐标为(a,-a),则,解得a=1,故圆心坐标为(1,-1),半径r=所以圆的方程为(x-1)2+(y+1)2=2.B242aaaa,2211【例2】(12分)已知实数x、y满足方程x2+y2-4x+1=0.(1)求y-x的最大值和最小值;(2)求x2+y2的最大值和最小值.根据代数式的几何意义,借助于平面几何知识,数形结合求解.解圆的标准方程为(x-2)2+y2=3.1分(1)y-x可看作是直线y=x+b在y轴上的截距,当直线y=x+b与圆相切时,纵截距b取得最大值或最小值,3分此时解得b=-2±.5分所以y-x的最大值为最小值为7分思维启迪,3202b6.62,62题型二与圆有关的最值问题(2)x2+y2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点与圆心连线与圆的两个交点处取得最大值和最小值.9分又圆心到原点的距离为10分所以x2+y2的最大值是x2+y2的最小值是12分,2)00()02(22,347)32(2.347)32(2探究提高与圆有关的最值问题,常见的有以下几种类型:(1)形如形式的最值问题,可转化为动直线斜率的最值问题;(2)形如t=ax+by形式的最值问题,可转化为动直线截距的最值问题;(3)形如(x-a)2+(y-b)2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.axby知能迁移2已知点P(x,y)是圆(x+2)2+y2=1上任意一点.(1)求P点到直线3x+4y+12=0的距离的最大值和最小值;(2)求x-2y的最大值和最小值;(3)求的最大值和最小值.解(1)圆心C(-2,0)到直线3x+4y+12=0的距离为∴P点到直线3x+4y+12=0的距离的最大值为d+r=+1=,最小值为d-r=-1=.12xy.56431204)2(322d565115651(2)设t=x-2y,则直线x-2y-t=0与圆(x+2)2+y2=1有公共点.∴tmax=-2,tmin=-2-.(3)设k=则直线kx-y-k+2=0与圆(x+2)2+y2=1有公共点,5,2525.121222tt5,12xy.433,433,433433.1123minmax2kkkkk题型三与圆有关的轨迹问题【例3】设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM、ON为两边作平行四边形MONP,求点P的轨迹.先设出P点、N点坐标,根据平行四边形对角线互相平分,用P点坐标表示N点坐标,代入圆的方程可求.思维启迪解如图所示,设P(x,y),N(x0,y0),则线段OP的中点坐标为线段MN的中点坐标为由于平行四边形的对角线互相平分,N(x+3,y-4)在圆上,故(x+3)2+(y-4)2=4.因此所求轨迹为圆:(x+3)2+(y-4)2=4,但应除去两点(点P在直线OM上时的情况).2,2yx.24,2300yx.43,242,2320000yyxxyyxx从而故528,521512,59和探究提高求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:直接法,直接根据题目提供的条件列出方程;定义法,根据圆、直线等定义列方程;几何法,利用圆与圆的几何性质列方程;代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.知能迁移3已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.(1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求PQ中点的轨迹方程.解(1)设AP中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).∵P点在圆x2+y2=4上,∴(2x-2)2+(2y)2=4.故线段AP中点的轨迹方程为(x-1)2+y2=1.(2)设PQ的中点为N(x,y),在Rt△PBQ中,|PN|=|BN|,设O为坐标原点,连结ON,则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2所以x2+y2+(x-1)2+(y-1)2=4.故PQ中点N的轨迹方程为x2+y2-x-y-1=0.题型四圆的综合应用【例4】已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P,Q两点,且OP⊥OQ(O为坐标原点),求该圆的圆心坐标及半径.(1)利用垂直列出坐标之间关系,再化为m的方程求解;(2)OP⊥OQ得到O点在以PQ为直径的圆上,再利用勾股定理求解;(3)利用圆的性质列出m的方程求解.思维启迪解方法一将x=3-2y,代入方程x2+y2+x-6y+m=0,得5y2-20y+12+m=0.设P(x1,y1),Q(x2,y2),则y1、y2满足条件:y1+y2=4,y1y2=∵OP⊥OQ,∴x1x2+y1y2=0.而x1=3-2y1,x2=3-2y2∴x1x2=9-6(y1+y2)+4y1y2∴m=3,此时Δ>0,圆心坐标为,半径r=..512m3,2125.5427m方法二如图所示,设弦PQ中点为M,∵O1M⊥PQ,∴∴O1M的方程为y-3=2即:y=2x+4.由方程组解得M的坐标为(-1,2).则以PQ为直径的圆可设为(x+1)2+(y-2)2=r2.∵OP⊥OQ,∴点O在以PQ为直径的圆上.∴(0+1)2+(0-2)2=r2,即r2=5,MQ2=r2.在Rt△O1MQ中,O1Q2=O1M2+MQ2.,21x.21MOk,03242yxxy∴m=3.∴半径为,圆心为方法三设过P、Q的圆系方程为x2+y2+x-6y+m+(x+2y-3)=0.由OP⊥OQ知,点O(0,0)在圆上.∴圆系方程可化为x2+y2+x-6y+3+x+2y-3=0即x2+(1+)x+y2+2(-3)y=0..44)6(15)23(121222m25.3,21.3,03mm即又圆心在PQ上.∴+2(3-)-3=0,∴=1,∴m=3.∴圆心为半径为.,2)3(221,M圆心213,2125探究提高(1)在解决与圆有关的问题中,借助于圆的几何性质,往往会使得思路简捷明了,简化思路,简便运算.(2)本题中三种解法都是方程思想求m值,即三种解法围绕“列出m的方程”求m值.知能迁移4已知圆C:(x-1)2+(y-2)2=25及直线l:(2m+1)x+(m+1)y=7m+4(m∈R).(1)证明:不论m取什么实数,直线l与圆C恒相交;(2)求直线l被圆C截得的弦长的最短长度及此时的直线方程.(1)证明直线l可化为x+y-4+m(2x+y-7)=0,即不

1 / 57
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功