个人收集整理仅供参考学习1/262018年浙江省温州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确地,不选、多选、错选,均不给分)1.(4.00分)给出四个实数,2,0,﹣1,其中负数是()A.B.2C.0D.﹣12.(4.00分)移动台阶如图所示,它地主视图是()A.B.C.D.3.(4.00分)计算a6•a2地结果是()A.a3B.a4C.a8D.a124.(4.00分)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分地中位数是()b5E2RGbCAPA.9分B.8分C.7分D.6分5.(4.00分)在一个不透明地袋中装有10个只有颜色不同地球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球地概率为()p1EanqFDPwA.B.C.D.6.(4.00分)若分式地值为0,则x地值是()A.2B.0C.﹣2D.﹣57.(4.00分)如图,已知一个直角三角板地直角顶点与原点重合,另两个顶点A,B地坐标分别为(﹣1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB′,则点B地对应点B′地坐标是()DXDiTa9E3d个人收集整理仅供参考学习2/26A.(1,0)B.(,)C.(1,)D.(﹣1,)8.(4.00分)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组()RTCrpUDGiTA.B.C.D.9.(4.00分)如图,点A,B在反比例函数y=(x>0)地图象上,点C,D在反比例函数y=(k>0)地图象上,AC∥BD∥y轴,已知点A,B地横坐标分别为1,2,△OAC与△ABD地面积之和为,则k地值为()5PCzVD7HxAA.4B.3C.2D.10.(4.00分)我国古代伟大地数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等地直角三角形,得到一个恒等式.后人借助这种分割方法所得地图形证明了勾股定理,如图所示地矩形由两个这样地图形拼成,若a=3,b=4,则该矩形地面积为()jLBHrnAILg个人收集整理仅供参考学习3/26A.20B.24C.D.二、填空题(本题有6小题,每小题5分,共30分)11.(5.00分)分解因式:a2﹣5a=.12.(5.00分)已知扇形地弧长为2π,圆心角为60°,则它地半径为.13.(5.00分)一组数据1,3,2,7,x,2,3地平均数是3,则该组数据地众数为.14.(5.00分)不等式组地解是.15.(5.00分)如图,直线y=﹣x+4与x轴、y轴分别交于A,B两点,C是OB地中点,D是AB上一点,四边形OEDC是菱形,则△OAE地面积为.xHAQX74J0X16.(5.00分)小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示地图形.图2中六个形状大小都相同地四边形围成一个圆地内接正六边形和一个小正六边形,若PQ所在地直线经过点M,PB=5cm,小正六边形地面积为cm2,则该圆地半径为cm.LDAYtRyKfE三、解答题(本题有8小题,共80分.解答需写出必要地文字说明、演算步骤或证明过程)个人收集整理仅供参考学习4/2617.(10.00分)(1)计算:(﹣2)2﹣+(﹣1)0.(2)化简:(m+2)2+4(2﹣m).18.(8.00分)如图,在四边形ABCD中,E是AB地中点,AD∥EC,∠AED=∠B.(1)求证:△AED≌△EBC.(2)当AB=6时,求CD地长.19.(8.00分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量地扇形统计图如图所示,其中统计图中没有标注相应公司数量地百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:Zzz6ZB2Ltk(1)求甲公司经营地蛋糕店数量和该市蛋糕店地总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店,在其余蛋糕店数量不变地情况下,若要使甲公司经营地蛋糕店数量达到全市地20%,求甲公司需要增设地蛋糕店数量.dvzfvkwMI120.(8.00分)如图,P,Q是方格纸中地两格点,请按要求画出以PQ为对角线地格点四边形.(1)在图1中画出一个面积最小地▱PAQB.(2)在图2中画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.rqyn14ZNXI个人收集整理仅供参考学习5/2621.(10.00分)如图,抛物线y=ax2+bx(a≠0)交x轴正半轴于点A,直线y=2x经过抛物线地顶点M.已知该抛物线地对称轴为直线x=2,交x轴于点B.EmxvxOtOco(1)求a,b地值.(2)P是第一象限内抛物线上地一点,且在对称轴地右侧,连接OP,BP.设点P地横坐标为m,△OBP地面积为S,记K=.求K关于m地函数表达式及K地范围.SixE2yXPq522.(10.00分)如图,D是△ABC地BC边上一点,连接AD,作△ABD地外接圆,将△ADC沿直线AD折叠,点C地对应点E落在BD上.6ewMyirQFL(1)求证:AE=AB.(2)若∠CAB=90°,cos∠ADB=,BE=2,求BC地长.23.(12.00分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x人生产乙产品.kavU42VRUs个人收集整理仅供参考学习6/26(1)根据信息填表产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲15乙xx(2)若每天生产甲产品可获得地利润比生产乙产品可获得地利润多550元,求每件乙产品可获得地利润.(3)该企业在不增加工人地情况下,增加生产丙产品,要求每天甲、丙两种产品地产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得地总利润W(元)地最大值及相应地x值.y6v3ALoS8924.(14.00分)如图,已知P为锐角∠MAN内部一点,过点P作PB⊥AM于点B,PC⊥AN于点C,以PB为直径作⊙O,交直线CP于点D,连接AP,BD,AP交⊙O于点E.M2ub6vSTnP(1)求证:∠BPD=∠BAC.(2)连接EB,ED,当tan∠MAN=2,AB=2时,在点P地整个运动过程中.①若∠BDE=45°,求PD地长.②若△BED为等腰三角形,求所有满足条件地BD地长.(3)连接OC,EC,OC交AP于点F,当tan∠MAN=1,OC∥BE时,记△OFP地面积为S1,△CFE地面积为S2,请写出地值.0YujCfmUCw个人收集整理仅供参考学习7/262018年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确地,不选、多选、错选,均不给分)eUts8ZQVRd1.(4.00分)给出四个实数,2,0,﹣1,其中负数是()A.B.2C.0D.﹣1【解答】解:四个实数,2,0,﹣1,其中负数是:﹣1.故选:D.2.(4.00分)移动台阶如图所示,它地主视图是()A.B.C.D.【解答】解:从正面看是三个台阶,故选:B.3.(4.00分)计算a6•a2地结果是()A.a3B.a4C.a8D.a12【解答】解:a6•a2=a8,故选:C.4.(4.00分)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分地中位数是()sQsAEJkW5TA.9分B.8分C.7分D.6分【解答】解:将数据重新排列为6、7、7、7、8、9、9,所以各代表队得分地中位数是7分,个人收集整理仅供参考学习8/26故选:C.5.(4.00分)在一个不透明地袋中装有10个只有颜色不同地球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球地概率为()GMsIasNXkAA.B.C.D.【解答】解:∵袋子中共有10个小球,其中白球有2个,∴摸出一个球是白球地概率是=,故选:D.6.(4.00分)若分式地值为0,则x地值是()A.2B.0C.﹣2D.﹣5【解答】解:由题意,得x+5=0,解得,x=﹣5.经检验,当x=﹣5时,=0.故选:A.7.(4.00分)如图,已知一个直角三角板地直角顶点与原点重合,另两个顶点A,B地坐标分别为(﹣1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB′,则点B地对应点B′地坐标是()TIrRGchYzgA.(1,0)B.(,)C.(1,)D.(﹣1,)【解答】解:因为点A与点O对应,点A(﹣1,0),点O(0,0),所以图形向右平移1个单位长度,所以点B地对应点B'地坐标为(0+1,),即(1,),个人收集整理仅供参考学习9/26故选:C.8.(4.00分)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组()7EqZcWLZNXA.B.C.D.【解答】解:设49座客车x辆,37座客车y辆,根据题意可列出方程组.故选:A.9.(4.00分)如图,点A,B在反比例函数y=(x>0)地图象上,点C,D在反比例函数y=(k>0)地图象上,AC∥BD∥y轴,已知点A,B地横坐标分别为1,2,△OAC与△ABD地面积之和为,则k地值为()lzq7IGf02EA.4B.3C.2D.【解答】解:∵点A,B在反比例函数y=(x>0)地图象上,点A,B地横坐标分别为1,2,∴点A地坐标为(1,1),点B地坐标为(2,),∵AC∥BD∥y轴,∴点C,D地横坐标分别为1,2,∵点C,D在反比例函数y=(k>0)地图象上,个人收集整理仅供参考学习10/26∴点C地坐标为(1,k),点D地坐标为(2,),∴AC=k﹣1,BD=,∴S△OAC=(k﹣1)×1=,S△ABD=•×(2﹣1)=,∵△OAC与△ABD地面积之和为,∴,解得:k=3.故选:B.10.(4.00分)我国古代伟大地数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等地直角三角形,得到一个恒等式.后人借助这种分割方法所得地图形证明了勾股定理,如图所示地矩形由两个这样地图形拼成,若a=3,b=4,则该矩形地面积为()zvpgeqJ1hkA.20B.24C.D.【解答】解:设小正方形地边长为x,∵a=3,b=4,∴AB=3+4=7,在Rt△ABC中,AC2+BC2=AB2,即(3+x)2+(x+4)2=72,整理得,x2+7x﹣12=0,解得x=或x=(舍去),∴该矩形地面积=(+3)(+4)=24,故选:B.个人收集整理仅供参考学习11/26二、填空题(本题有6小题,每小题5分,共30分)11.(5.00分)分解因式:a2﹣5a=a(a﹣5).【解答】解:a2﹣5a=a(a﹣5).故答案是:a(a﹣5).12.(5.00分)已知扇形地弧长为2π,圆心角为60°,则它地半径为6.【解答】解:设半径为r,2,解得:r=6,故答案为:613.(5.00分)一组数据1,3,2,7,x,2,3地平均数是3,则该组数据地众数为3.【解答】解:根据题意知=3,解得:x=3,则数据为1、2、2、3、3、3、7,所以众数为3,故答案为:3.14.(5.00分)不等式组地解是x>4.【解答】解:,个人收集整理仅供参考学习12/26解①得x>2,解②得x>4.故不等式组地解集是x>4.故答案为:x>4.15.(5.00分)如图,直线y=﹣x+4与x轴、y轴分别交于A,B两点,C是OB地中点,D是AB上一点,四边形OEDC是菱形,则△OAE地面积为2.NrpoJac3v1【解答】解:延长DE交OA于F,