1课题:3.1等差数列(一)教学目标:1.知识目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式,初步引入“数学建模”的思想方法并能运用。2.能力目标:培养学生观察分析、猜想归纳、应用公式的能力;在领会函数与数列关系的前提下,渗透函数、方程的思想。3.情感目标:通过对等差数列的研究培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。重点:等差数列的概念及通项公式。难点:(1)理解等差数列“等差”的特点及通项公式的含义。(2)等差数列的通项公式的推导过程及应用。授课类型:新授课课时安排:2课时教具:多媒体、实物投影仪教学过程:一、复习引入:1.回忆数列的定义,请举出一个具体的例子。表示数列有哪几种方法——列举法、通项公式、递推公式。我们这节课接着学习一类特殊的数列——等差数列。2.由生活中具体的数列实例引入(1).国际奥运会早期,撑杆跳高的记录近似的由下表给出:年份1900190419081912高度(M)3.333.533.733.93你能看出这4次撑杆条跳世界记录组成的数列,它的各项之间有什么关系吗?2(2)某剧场前10排的座位数分别是:48、46、44、42、40、38、36、34、32、30引导学生观察:数列①、②有何规律?引导学生得出“从第2项起,每一项与前一项的差都是同一个常数”,我们把这样的数列叫做等差数列.(板书课题)二.新课探究,推导公式1.等差数列的概念.如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。强调:①“从第二项起”满足条件;②公差d一定是由后项减前项所得;③每一项与它的前一项的差必须是同一个常数(强调“同一个常数”);所以上面的2、3都是等差数列,他们的公差分别为0.20,-2。[练习一]判断下列各组数列中哪些是等差数列,哪些不是?如果是,写出首项a1和公差d,如果不是,说明理由。1.3,5,7,……√d=22.9,6,3,0,-3,……√d=-33.0,0,0,0,0,0,…….;√d=04.1,2,3,2,3,4,……;×5.1,0,1,0,1,……×通过练习,加深对概念的理解,由此强调:公差可以是正数、负数,也可以是02.等差数列通项公式如果等差数列{an}首项是a1,公差是d,那么根据等差数列的定义可得:a2-a1=d即:a2=a1+da3–a2=d即:a3=a2+d=a1+2da4–a3=d即:a4=a3+d=a1+3d……3猜想:a40=a1+39d进而归纳出等差数列的通项公式:an=a1+(n-1)d此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:n=a1+(n-1)da2-a1=da3-a2=da4–a3=d……an–an-1=d将这(n-1)个等式左右两边分别相加,就可以得到an-a1=(n-1)d即an=a1+(n-1)d(Ⅰ)当n=1时,(Ⅰ)也成立,所以对一切n∈N﹡,上面的公式(Ⅰ)都成立,因此它就是等差数列{an}的通项公式。三.应用举例例1(1)求等差数列,12,8,4,0,…的第10项;20项;第30项;(2)-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?解:(1)由a1=12,d=8-12=-4,n=10得∴a10=12+(10-1)×(-4)=-24(2)解:由a1=-5,d=-9-(-5)=-4,得∴an=-5+(n-1)×(-4)=-4n-1令-4n-1=-401,解得n=100即-401是这个数列的第100项例2在等差数列{an}中,已知a4=7,a9=22,求首项a1与公差d。在前面例1的基础上将例2当作练习作为对通项公式的巩固例3梯子的最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。让学生会用所学数学公式解决简单的实际问题4四.反馈练习1.P293练习A组第1题和第2题(要求学生在规定时间内做完上述题目,教师提问)。目的:使学生熟悉通项公式对学生进行基本技能训练。2.如果直角三角形的三条边的长度成等差数列,且较长的直角边的长度为a,求较短直角边与斜边的长度。目的:对学生加强建模思想训练。五.归纳小结提炼精华(由学生总结这节课的收获)1.等差数列的概念及数学表达式.强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数2.等差数列的通项公式an=a1+(n-1)d会知三求一六.课后作业运用巩固必做题:课本P284习题A组第3,4,5题选做题:已知等差数列{an}的首项a1=-22,第10项是第一个大于1的项。求公差d的取值范围。(教学设想:通过分层作业,提高同学们的求知欲和满足不同层次的需求)板书设计本节课的重点是等差数列的定义及其通项公式与应用,因此把强调的问题放在较醒目的位置,突出了重点,同时还给学生留有作题的地方,整个板面看上去自然、清晰、美观,还能充分表现出精讲多练的教学方法。西安市雁塔区职业高级中学冯月辉2008-4-15§6.2等差数列1、定义2、数学表达式3、等差数列的通项公式例1(略)练习:例2(略)例3(略)5