最新人教版六年级数学下册全册教案(DOC可编辑)打印版一、负数第1课时负数的认识【教学内容】教材第2、3页例1和例2【教材分析】本节课教材选取了学生比较熟悉和感兴趣的素材,使他们在具体的情境中认识正、负数。通过6个城市同一天的温度及存折中存入和支出钱数的对比,学生可以进一步体会生活中用正、负数表示两种相反意义的量。【学情分析】本节课是在学生认识了自然数、分数和小数的基础上学习的,是负数的初步认识,应从学生的日常生活出发,带领学生认识负数,感受负数在生活中的广泛应用。【教学目标】1.结合具体情境,了解负数产生的过程、意义,对负数有初步的认识。2.使学生能正确地读写负数,能对生活中有关负数的事物产生兴趣。【教学重难点】重点:初步认识正数和负数,并了解它们的读法和写法。难点:理解0既不是正数,也不是负数。【教学准备】多媒体课件【情境导入】师:同学们,你们看过天气预报吗?1.(课件出示天气预报片段)今年一月某一天部分城市的气温情况如下:哈尔滨:-15℃~3℃北京:-3℃~3℃上海:0℃~8℃引导观察:看了这些城市的温度,你发现了什么?有何感想?2.北京的气温是-3℃~3℃,那么-3℃和3℃表示的意义相同吗?哪个温度高?哪个温度低?为什么?3.引出课题并板书:负数的认识。【新课讲授】1.教学例1(课件出示例1情境图)(1)师:长沙的最低气温是0℃。你知道0℃表示什么意思吗?(0℃表示淡水开始结冰的温度)(2)师:-3℃和3℃各表示什么意思?怎么读?指名回答,教师解说:-3℃表示零下3℃,就是比0℃低的温度,读作负三摄氏度;3℃表示零上3℃,就是比0℃高的温度,读作三摄氏度,也可写作+3℃,读作正三摄氏度。(3)师:数字前的“-”是负号,“+”是正号,“+”一般情况下可省略不写。(4)引导学生完成教材第2页下面的填表,说出各数表示的意思。2.教学例2出示例2中银行存折明细的示意图。师:大家说一说,存折上这些数各表示什么?指名回答。生:2000.00,500.00这些数表示的是存入的钱数,-500.00,-132.00这些数表示的是支出的钱数。师:存入与支出是一对相反意义的量。3.认识负数。师:我们刚刚学过“-3℃”和“3℃”以及“500”和“-500”,说说你是怎么理解它们的。学生讨论汇报,教师归纳:“3℃”与“-3℃”是相反意义的量。“500”和“-500”也是一对相反意义的量。师:为了表示两种相反意义的量,这里出现了一种新的数:-3,-500。像-3、-500、-4.7、-38,这样的数叫做负数。读负数时先读“负”,再读数,如-3读作负三,-38读作负八分之三。而以前所学的3、500、4.7、38,这样的数叫做正数。正数前面也可以加“+”号,如+3、+38、+4.7等。读正数时先读“正”,再读数,如+3读作正三,+4.7读作正四点七。师强调:正数前面可以加上“+”,但通常不写,而负数前面的“-”必须写。4.关于0讨论交流:0是正数吗?0是负数?结论:0既不是正数,也不是负数。它是正、负数的分界点。【巩固训练】1.完成教材第4页“做一做”。2.完成教材第6页第1~3题。【课堂小结】今天我们认识了负数,你理解负数的意义了吗?你知道怎样读、写负数了吗?【板书设计】负数的认识正数3、2000、38、4.7正号“+”+38读作正八分之三负数-500、-38、-4.7负号“-”-4.7读作负四点七0既不是正数,也不是负数。第2课时在直线上表示正、负数【教学内容】教材第5页例3【教材分析】本节课教材结合活动情境,引入了在直线上表示从一点向两个相反方向运动后的情形,也就是在直线上表示正数、0和负数的内容。【学情分析】本单元虽然是负数的初步认识,但内容较为抽象。学生在日常生活中已经接触到了一些负数,有了初步认识负数的基础,所以课本从学生的实际生活入手引导学生初步认识负数。【教学目标】1.会在直线上表示正数、0和负数,用有正数和负数的直线表示距离和方向。2.培养学生应用数学的能力,使学生体验数学与生活的密切联系,激发学生学习数学的兴趣。【教学重难点】重点:学会在直线上表示正、负数的方法。难点:用有正、负数的直线表示距离和方向。【教学准备】多媒体课件【谈话导入】师:同学们,以前我们也学过在直线上表示数的方法。大家还能想起以前学的直线上能表示哪些数吗?生1:整数。生2:小数。生3:还有分数。师:我们上节课学习的负数能不能在直线上表示呢?生此时不知如何回答。(师顺势引出新课)师:我们今天就来学习在直线上表示正、负数。(板书课题)【探究新知】1.教学例3课件出示例3情境图及题目。师:你能在一条直线上表示四个同学运动后的情况吗?生1:首先要确定好起点。大家都是以大树为起点。生2:然后要确定方向,有两位同学向东走,有两位同学向西走。生3:还有就是他们走的距离。师:怎样用数来表示这些学生和大树的相对位置关系呢?让学生结合学过的正、负数表示生活中两种相反意义的量和经验,把直线上的点和正、负数对应起来。师:大家能说一说直线上的其他点代表的数吗?生1:大树为起点,对应点是0。生2:1表示以大树为起点向东1m。-1表示以大树为起点向西1m。生3:2表示以大树为起点向东2m。-2表示以大树为起点向西2m。……师:我们可以像这样在直线上表示出正数、0和负数。课件出示直线图。师:用直线上的点表示正、负数时应注意哪几点?生:正方向、原点、单位长度。师:大家再考虑一下,如何在直线上表示小数和分数呢?在直线上找到1.5和-1.5对应的点。生:先找到1.5的点,再用相同的方法在反方向上找到-1.5。2.归纳用直线上的点表示正、负数的方法:用0表示起点,0右边的数是正数,0左边的数是负数。用有正数和负数的直线可以表示距离和相反的方向。【巩固训练】1.完成教材第5页“做一做”。指定一名同学在黑板上板演,其余同学在课本上完成。2.完成教材“练习一”第4、7题。【课堂小结】今天这节课你学到了哪些知识?【板书设计】在直线上表示正、负数在直线上,用0表示起点,0右边的数是正数,0左边的数是负数。二、百分数(二)第1课时折扣,二百分数(二))(这是边文,请据需要手工删加)【教学内容】教材第8页例1【教材分析】“折扣”这个概念在我们日常生活和生产实践中经常用到。“折扣”应用于很多商品经济领域。学生对这个概念并不陌生,大多数同学在日常生活中通过新闻媒体、购物等对折扣多少有所接触与了解,但学生的这些认识还只停留在感性认识上。【学情分析】学生已经解答“求一个数是另一个数的百分之几”的问题,以及求一个数的百分之几是多少的问题,本部分是解答“打折”的实际问题,沟通各类百分数问题的联系。【教学目标】1.使学生联系百分数的意义认识“折扣”的含义,体会折扣和分数、百分数的关系,加深对百分数的数量关系的理解。2.了解“折扣”在日常生活中的应用,学会联系百分数应用题的知识迁移解决一些折扣和生活实际问题。【教学重难点】重点:学会解答有关折扣的实际问题。难点:合理、灵活地选择方法,解答有关折扣的实际问题。【教学准备】多媒体课件【情境导入】师:周末放假,你们玩得开心吗,那你们最开心的是什么呢?说给大家听听。(全班交流)教师播放一段商场工作人员做打折促销商品的录像。看了这段录像,你能提出哪些有关数学的问题?(学生围绕录像内容自由提问)教师提出:同学们刚才提出的问题与我们今天要学习的内容有关系。(板书课题:折扣)【探究新知】1.“折扣”的含义。(1)课件出示第8页上面情境图(商场店庆,电器九折,其他商品八五折)师:从图上你了解到哪些信息?你有什么想法?你是怎样理解“九折、八五折”的。(2)学生讨论交流,教师讲解:几折表示十分之几,也就是百分之几十。八五折表示十分之八点五,也就是百分之八十五。九折表示十分之几,也就是百分之九十。2.教学例1(1)课件出示例1主题图师:看了这则好消息你有没有心动呢?小雨和他的爸爸看到这则好消息可高兴了,他们各自挑了自己需要的商品。(2)出示第(1)题题目:爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?学生讨论解题思路,教师分析引导:“八五折”就是指现价是原价的85%,也就是求180元的85%是多少,所以用乘法计算,列式为180×85%。(板书算式)(3)出示第(2)题题目:爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?师:你能用刚才的解题方法算一下小雨的爸爸买随身听应付多少钱吗?引导分析:现价是原价的90%,求应付多少钱,列式为160×90%=144(元),求“比原价便宜了多少钱”,列式为160-144=16(元)。师:还有别的方法吗?现价是原价的90%,也就是现价比原价便宜1-90%=10%,然后直接用原价乘这个便宜的百分率,列式为160×(1-90%)=16(元)。3.比较归纳:(1)这两道题有什么相同,有什么不同?有什么联系?(第(1)题是已知原价和折扣率,求现价;第(2)题已知条件和(1)一样,求的是比原价便宜多少)(2)这两种解法有什么相同,有什么不同?有什么联系?(第(1)题直接用原价乘折扣率,第(2)题可以先用原价乘折扣率先得现价,再用原价减现价得便宜的价钱;也可以先求现价比原价便宜的百分率,再直接用原价乘这个百分率)【巩固训练】1.完成教材第8页“做一做”。2.完成教材第13页1~3题。【课堂小结】师:通过今天的学习,你有什么收获?【板书设计】折扣几折表示十分之几,也就是百分之几十。如:八五折表示十分之八点五,也就是百分之八十五。例1:(1)180×85%=153(元)(2)160×(1-90%)=160×10%=16(元)第2课时成数【教学内容】教材第9页例2【教材分析】“成数”是百分数的应用知识中与生活实际联系紧密的部分,尤其是在农业方面。对于现在的孩子来说,“成数”的意义还是比较陌生的。教材以油菜籽的产量和工厂的用电量为例,来讲述成数的含义。【学情分析】学生对成数的意义很陌生,但是有了以前学习的百分数的应用题和上一节课所学的折扣做铺垫,老师讲解之后,学生会很快接受。【教学目标】1.使学生理解成数的含义,会进行成数和百分数之间的互相改写。2.能应用成数进行有关的计算,进一步了解成数在各行各业中的应用。【教学重难点】重点:能应用成数进行有关计算。难点:理解成数的含义。【教学准备】多媒体课件【谈话导入】师:前面我们学习了百分数的一些应用,像计算发芽率、出勤率、求一个数是另一个数的百分之几、一个数的百分之几是多少,还有在上一节课学习的折扣等。今天我们来学习百分数的另一种应用——成数。(板书课题:成数)【探究新知】1.成数的含义。师:成数常常用来说明农业的收成,比如:今年我省油菜籽比去年增产二成,苹果比去年减产一成五。这里的“二成”和“一成五”是用来说明收成情况的。成数表示一个数是另一个数的十分之几,通称“几成”。“二成”就是十分之二,改写成百分数是20%。那么“一成五”就是十分之几?改写成百分数是多少?(指名回答,教师适时板书)师:“我省油菜籽比去年增产二成”表示什么意思?生1:表示油菜籽比去年增产20%。师:“苹果比去年减产一成五”表示什么意思?生2:表示苹果比去年减产15%。……师小结:现在,“成数”已经广泛应用于表示各行各业的发展变化情况。如:出口汽车总量比去年增加三成,北京出游人数比去年增加两成……2.教学例2(1)课件出示例2题目。学生自读题目,教师提问:“节电二成五”表示什么意思?指名回答。生3:“节电二成五”表示减少25%。(2)师:怎样计算?根据是什么?(学生交流讨论后口述,教师板书算式。)350×25%=87.5(万千瓦时)350-87.5=262.5(万千瓦时)师补充:“节电二成五”也表示今年的用电量是去年的1-25%=75%,所以还可以列式为350×(1-25%)=262.5(万千瓦时)。(3)引导学生比较归纳:这两种解法有什么相同,有什么不同?有什么联系?第一种方法是先求出节约的用电数量,再用去年的用电量减去节约的用电量。第二种方法是先求出今年的用电量是去年的百分之几,再求出今年的用电量