高等代数第四次作业第二章行列式§1—§4一、填空题1.填上适当的数字,使72__43__1为奇排列.6,52.四阶行列式44ijaD中,含24a且带负号的项为_____.112433421224314313243241,,aaaaaaaaaaaa3.设.212222111211daaaaaaaaannnnnn则._____122122211121nnnnnnaaaaaaaaa(1)2(1)nnd4.行列式11111111x的展开式中,x的系数是_____.2二、判断题1.若行列式中有两行对应元素互为相反数,则行列式的值为0()√2.设d=nnnnnnaaaaaaaaa212222111211则121112222121nnnnnnaaaaaaaaa=d()×3.设d=nnnnnnaaaaaaaaa212222111211则daaaaaaaaannnnnn112112122221()×4.abcdzzzdyycxba000000()√5.abcddcxbyxazyx000000()×6.0000000yxhgfedcba()√7.如果行列式D的元素都是整数,则D的值也是整数。()√8.如果行列D的元素都是自然数,则D的值也是自然数。()×9.nnaaaaaa2121()×10.000100002000010nn=n!()×三、选择题1.行列式01110212kk的充分必要条件是()D(A)2k(B)2k(C)3k(D)2k或32.方程093142112xx根的个数是()C(A)0(B)1(C)2(D)33.下列构成六阶行列式展开式的各项中,取“+”的有()A(A)665144322315aaaaaa(B)655344322611aaaaaa(C)346542165321aaaaaa(D)513312446526aaaaaa4.n阶行列式的展开式中,取“–”号的项有()项A(A)2!n(B)22n(C)2n(D)2)1(nn5.若(145)11243455(1)klklaaaaa是五阶行列式的一项,则lk,的值及该项的符号为()B(A)3,2lk,符号为正;(B)3,2lk,符号为负;(C)3,1kl,符号为正;(D)1,3kl,符号为负6.如果0333231232221131211MaaaaaaaaaD,则3332312322211312111222222222aaaaaaaaaD=()C(A)2M(B)-2M(C)8M(D)-8M7.如果1333231232221131211aaaaaaaaaD,3332313123222121131211111232423242324aaaaaaaaaaaaD,则1D()C(A)8(B)12(C)24(D)24四、计算题1.计算3214214314324321解:3214214314324321321421431432111110123012101210111110440004001210111110400004001210111110=1602.计算3111131111311113.解:3111131111311113=31111311113111116=20000200002011116=.48263高等代数第五次作业第二章行列式§5—§7一、填空题1.设ijijAM,分别是行列式D中元素ija的余子式,代数余子式,则._____1,1,iiiiAM02.122305403中元素3的代数余子式是.63.设行列式4321630211118751D,设jjAM44,分布是元素ja4的余子式和代数余子式,则44434241AAAA=,44434241MMMM=.0,664.若方程组02020zykxzkyxzkx仅有零解,则k.25.含有n个变量,n个方程的齐次线性方程组,当系数行列式D时仅有零解.0二、判断题1.若n级行列试D中等于零的元素的个数大于2nn,则D=0()√2.222)(00000000abbaabbaab()√3.222)(00000000baabbaabba()√4.0dbacdbcabdcabdac()√5.483111131111311113()√6.)(000000hxgyayhfdxgecba()×7.0107310111187654321()√三、选择题1.行列式102211321的代数余子式13A的值是()D(A)3(B)1(C)1(D)22.下列n(n2)阶行列式的值必为零的是()D(A)行列式主对角线上的元素全为零(B)行列式主对角线上有一个元素为零(C)行列式零元素的个数多于n个(D)行列式非零元素的个数小于n个3.若111111111111101)(xxf,则)(xf中x的一次项系数是()D(A)1(B)1(C)4(D)44.4阶行列式4433221100000000ababbaba的值等于()D(A)43214321bbbbaaaa(B)))((43432121bbaabbaa(C)43214321bbbbaaaa(D)))((41413232bbaabbaa5.如果122211211aaaa,则方程组0022221211212111bxaxabxaxa的解是()B(A)2221211ababx,2211112babax(B)2221211ababx,2211112babax(C)2221211ababx,2211112babax(D)2221211ababx,2211112babax6.三阶行列式第3行的元素为4,3,2对应的余子式分别为2,3,4,那么该行列式的值等于()B(A)3(B)7(C)–3(D)-77.如果方程组050403zykxzyzkyx有非零解,则k=()C(A)0(B)1(C)-1(D)3四、计算题1.计算D=100110011001aaaa解:方法1:100110011001aaaa21rraaaa10011000101121raraaaaa100110010011232rraaaaa1000101100112232(1)raraaaaaa100120011001123=aaaa11223=.13)1()2(2423aaaaaa方法2:将行列式按第一行展开,有:100110011001aaaa=1011011010101aaaaaa=1]01111[2aaaaaa=1])1([22aaaaa.1324aa2.计算12125431432321nnnDn解:12125431432321nnn121)1(254)1(143)1(32)1(21212121nnnnnnnnnn121125411431321)1(21nnnn111011101110321)1(21nnnnn111111111)1(21nnnnn)1()1(0000111)1(121212)1(nnnnnnnnn3.计算6427811694143211111解:6427811694143211111)34)(24)(23)(14)(13)(12(124.计算nD12111111111naaa解:nD12111111111naaanaaa110110112112111111+111aa1211nnnaaaDa).11(121niinaaaa5.解方程:22x9132513232x213211=0.解:22x9132513232x213211=223310131000103211xx=223310131000103211)1(xx=223300130000103211)1(xx=224000130000103211)1(xx=223(1)(4)xx.2,1x五、证明题1.证明:0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222ddddccccbbbbaaaa证明:2.设111,12,11,111211nnnnnaaaaaaD,求证:nDDDD21,其中kD1,2,,kn为将D中第k列元素换成121,,,,1nxxx后所得的新行列式。证明:将D增加一行和一列得到下列1n阶行列式,此行列式显然为0。1112111,11,21,111111111nnnnnnaaaxaaax将此行列式按第一行展开,得111110nkkkA,显然11111,111,2,,nkknkkkkADADkn,43433232212222222222222222222222221232123252122123212325212221232521221232123252122123ccccccccccaaaaaaaaaabbbbbbbbbbccccccccccdddddddddd40推论111,11nnAD,故1nkkDD。3.设naaa,,,21是数域P中互不相同的数,nbbb,,,21是数域P中任一组给定的数,用克拉默法则证明:有唯一的数域P上的多项式112210nnxcxcxccxf使iibafni,,2,1。证明:由iibaf得nnnnnnnnnnbacacaccbacacaccbacacacc11221021212222101111212110.............................................这是一个关于110,,,nccc的线性方程组,且它的系数行列式为一个范德蒙行列式.由已知该行列式不为0,故线性方程组只有唯一解,即所求多项式是唯一的.