1等差数列的概念与通项公式一、填空题1.已知}{an为等差数列,且1247aa,03a,则公差d.2.在等差数列}{an中,已知naaaan则,33,4,31521.3.在等差数列}{an中,335a,15345a,则201是该数列的第项.4.若ybbbxyaaxyx,,,,,,,,32121和数列各自成等差数列,则1212bbaa=.5.在等差数列}{an中,若mananm,,则nma.6.在等差数列}{an中,56837,22a,aaa则.7.在等差数列}{an中,6253,6,7aaaa则.8.在数列}{an中,10111,122,2aaaann则的.9.首项为24的等差数列从第10项开始为正数,求公差d的范围.10.等差数列na中,5a=5,510a,则此数列的第1个负数项是第项.11.在等差数列}{an中,若,1201210864aaaaa则11931aa.12.等差数列}{na的公差为正数,若15321aaa,80321aaa,则131211aaa_____.13.在数列}{an中,,31a且对任意大于1的正整数n,点),(1nnaa在直线03yx上,则na.14.数列}{an中,若nnnnaaaaa则,1,1211.二、简答题15.在等差数列}{na中:(1)已知63a,36a,求na;(2)已知31d,37n,629nS,求1a及na.216.已知数列1)}-(a{logn2为等差数列,且9,331aa,求数列通项公式na.17.已知等差数列na中,31a,85511aa,求前n项和nS的最小值.18.已知数列}{an中,531a,),2(2111Nnnaaannn,数列}{nb满足11nnab)(Nn(1)求证:数列}{nb是等差数列;(2)求数列}{an的通项公式.