ArcGIS的地理坐标系与大地坐标系一直以来,总有很多朋友针对地理坐标系、大地坐标系这两个概念吃不透。近日,在网上看到一篇文章介绍它们,非常喜欢。所以在此转发一下,希望能够对制图的朋友们有所帮助。地理坐标:为球面坐标。参考平面地是椭球面,坐标单位:经纬度大地坐标:为平面坐标。参考平面地是水平面,坐标单位:米、千米等地理坐标转换到大地坐标的过程可理解为投影。(投影:将不规则的地球曲面转换为平面)在ArcGIS中预定义了两套坐标系:地理坐标系(Geographiccoordinatesystem)投影坐标系(Projectedcoordinatesystem)1、首先理解地理坐标系(Geographiccoordinatesystem),Geographiccoordinatesystem直译为地理坐标系统,是以经纬度为地图的存储单位的。很明显,Geographiccoordinatesystem是球面坐标系统。我们要将地球上的数字化信息存放到球面坐标系统上,如何进行操作呢?地球是一个不规则的椭球,如何将数据信息以科学的方法存放到椭球上?这必然要求我们找到这样的一个椭球体。这样的椭球体具有特点:可以量化计算的。具有长半轴,短半轴,偏心率。以下几行便是Krasovsky_1940椭球及其相应参数。Spheroid:Krasovsky_1940SemimajorAxis:6378245.000000000000000000SemiminorAxis:6356863.018773047300000000InverseFlattening(扁率):298.300000000000010000然而有了这个椭球体以后还不够,还需要一个大地基准面将这个椭球定位。在坐标系统描述中,可以看到有这么一行:Datum:D_Beijing_1954表示,大地基准面是D_Beijing_1954。--------------------------------------------------------------------------------有了Spheroid和Datum两个基本条件,地理坐标系统便可以使用。完整参数:Alias:Abbreviation:Remarks:AngularUnit:Degree(0.017453292519943299)PrimeMeridian(起始经度):Greenwich(0.000000000000000000)Datum(大地基准面):D_Beijing_1954Spheroid(参考椭球体):Krasovsky_1940SemimajorAxis:6378245.000000000000000000SemiminorAxis:6356863.018773047300000000InverseFlattening:298.3000000000000100002、接下来便是Projectioncoordinatesystem(投影坐标系统),首先看看投影坐标系统中的一些参数。Projection:Gauss_KrugerParameters:False_Easting:500000.000000False_Northing:0.000000Central_Meridian:117.000000Scale_Factor:1.000000Latitude_Of_Origin:0.000000LinearUnit:Meter(1.000000)GeographicCoordinateSystem:Name:GCS_Beijing_1954Alias:Abbreviation:Remarks:AngularUnit:Degree(0.017453292519943299)PrimeMeridian:Greenwich(0.000000000000000000)Datum:D_Beijing_1954Spheroid:Krasovsky_1940SemimajorAxis:6378245.000000000000000000SemiminorAxis:6356863.018773047300000000InverseFlattening:298.300000000000010000从参数中可以看出,每一个投影坐标系统都必定会有GeographicCoordinateSystem。投影坐标系统,实质上便是平面坐标系统,其地图单位通常为米。那么为什么投影坐标系统中要存在坐标系统的参数呢?这时候,又要说明一下投影的意义:将球面坐标转化为平面坐标的过程便称为投影。好了,投影的条件就出来了:a、球面坐标b、转化过程(也就是算法)也就是说,要得到投影坐标就必须得有一个“拿来”投影的球面坐标,然后才能使用算法去投影!即每一个投影坐标系统都必须要求有GeographicCoordinateSystem参数。关于北京54和西安80是我们使用最多的坐标系先简单介绍高斯-克吕格投影的基本知识,了解就直接跳过,我国大中比例尺地图均采用高斯-克吕格投影,其通常是按6度和3度分带投影,1:2.5万-1:50万比例尺地形图采用经差6度分带,1:1万比例尺的地形图采用经差3度分带。具体分带法是:6度分带从本初子午线开始,按经差6度为一个投影带自西向东划分,全球共分60个投影带,带号分别为1-60;3度投影带是从东经1度30秒经线开始,按经差3度为一个投影带自西向东划分,全球共分120个投影带。为了便于地形图的测量作业,在高斯-克吕格投影带内布置了平面直角坐标系统,具体方法是,规定中央经线为X轴,赤道为Y轴,中央经线与赤道交点为坐标原点,x值在北半球为正,南半球为负,y值在中央经线以东为正,中央经线以西为负。由于我国疆域均在北半球,x值均为正值,为了避免y值出现负值,规定各投影带的坐标纵轴均西移500km,中央经线上原横坐标值由0变为500km。为了方便带间点位的区分,可以在每个点位横坐标y值的百千米位数前加上所在带号,如20带内A点的坐标可以表示为YA=20745921.8m。在CoordinateSystems\ProjectedCoordinateSystems\GaussKruger\Beijing1954目录中,我们可以看到四种不同的命名方式:Beijing19543DegreeGKCM75E.prjBeijing19543DegreeGKZone25.prjBeijing1954GKZone13.prjBeijing1954GKZone13N.prj对它们的说明分别如下:三度分带法的北京54坐标系,中央经线在东75度的分带坐标,横坐标前不加带号三度分带法的北京54坐标系,中央经线在东75度的分带坐标,横坐标前加带号六度分带法的北京54坐标系,分带号为13,横坐标前加带号六度分带法的北京54坐标系,分带号为13,横坐标前不加带号在CoordinateSystems\ProjectedCoordinateSystems\GaussKruger\Xian1980目录中,文件命名方式又有所变化:Xian19803DegreeGKCM75E.prjXian19803DegreeGKZone25.prjXian1980GKCM75E.prjXian1980GKZone13.prj西安80坐标文件的命名方式、含义和北京54前两个坐标相同,但没有出现“带号+N”这种形式,为什么没有采用统一的命名方式?让人看了有些费解。大地坐标(GeodeticCoordinate):大地测量中以参考椭球面为基准面的坐标。地面点P的位置用大地经度L、大地纬度B和大地高H表示。当点在参考椭球面上时,仅用大地经度和大地纬度表示。大地经度是通过该点的大地子午面与起始大地子午面之间的夹角,大地纬度是通过该点的法线与赤道面的夹角,大地高是地面点沿法线到参考椭球面的距离。方里网:是由平行于投影坐标轴的两组平行线所构成的方格网。因为是每隔整公里绘出坐标纵线和坐标横线,所以称之为方里网,由于方里线同时又是平行于直角坐标轴的坐标网线,故又称直角坐标网。在1:1万——1:20万比例尺的地形图上,经纬线只以图廓线的形式直接表现出来,并在图角处注出相应度数。为了在用图时加密成网,在内外图廓间还绘有加密经纬网的加密分划短线(图式中称“分度带”),必要时对应短线相连就可以构成加密的经纬线网。1:25万地形图上,除内图廓上绘有经纬网的加密分划外,图内还有加密用的十字线。我国的1:50万——1:100万地形图,在图面上直接绘出经纬线网,内图廓上也有供加密经纬线网的加密分划短线。直角坐标网的坐标系以中央经线投影后的直线为X轴,以赤道投影后的直线为Y轴,它们的交点为坐标原点。这样,坐标系中就出现了四个象限。纵坐标从赤道算起向北为正、向南为负;横坐标从中央经线算起,向东为正、向西为负。虽然我们可以认为方里网是直角坐标,大地坐标就是球面坐标。但是我们在一副地形图上经常见到方里网和经纬度网,我们很习惯的称经纬度网为大地坐标,这个时候的大地坐标不是球面坐标,她与方里网的投影是一样的(一般为高斯投影),也是平面坐标。地图投影系列介绍(一)_地球空间模型在之前的博文中,为大家介绍过ArcGIS中的地理坐标系和投影坐标系(或称大地坐标系)(),这里面简要的说明了两者的概念及关系。接下来,针对这块的GIS理论基础,将做个系统全面的介绍,希望为各位带来帮助。1、现实世界和坐标空间的联系任何空间特征都表示为地球表面的一个特定位置,而位置依赖于既定的坐标系来表示。通过统一的坐标系和高程系,可以使不同源的GIS数据叠加在一起显示,以及执行空间分析。2、地球空间模型描述为了深入研究地理空间,需要建立地球表面的几何模型,这是进行大地测量的前提。根据大地测量学的成果,地球表面几何模型可以分为三类:1)第一类是地球的自然表面。2)第二类是相对抽象的面,即大地水准面,可用来代表地球的物理化形状。其中大地水准面包围的球体,叫大地球体,是对地球形体的一级逼近。地球上有71%的海洋面积,因此可以假设当海水处于完全静止的平衡状态时,从海平面延伸到所有大陆下部,而与地球重力方向处处正交的一个连续、闭合的曲面,这就是大地水准面。它是重力等位面。3)第三类是以大地水准面为基准建立起来的地球椭球体模型。大地水准面虽然十分复杂,但从整体来看,起伏是微小的,且形状接近一个扁率极小的椭圆绕短轴旋转所形成的规则椭球体,这个椭球体称为地球椭球体。其表面是一个规则数学表面,可用数学公式表达,所以在测量和制图中用它替代地球的自然表面。地球形体的二级逼近。地球椭球体有长半径a(赤道半径)和短半径b(极半径)之分,f为椭圆的扁率。a、b、f是其三要素,决定地球椭球体的形状和大小。各种地球椭球体模型(参考椭球体,下面会介绍)如下图所示。我国1952年以前采用海福特椭球体,从1953年起采用克拉索夫斯基椭球体。1978年我国决定采用新椭球体GRS(1975),并以此建立了我国新的、独立的大地坐标系,对应ArcGIS里面的Xian_1980椭球体。从1980年开始采用新椭球体GRS(1980),这个椭球体参数与ArcGIS中的CGCS2000椭球体相同。地球椭球体视为球体:制作小比例尺地图时(小于1:500万),因缩小程度很大,可以把地球视为球体,忽略地球扁率。计算更简单,半径约为6371千米。地球椭球体视为椭球体:制作大比例尺地图时(大于1:100万),为保证精度,必须将地球视为椭球体。地图投影系列介绍(二)_地理坐标系3、地理坐标系地球的形状与大小确定之后,还必须确定椭球体与大地水准面的相对关系,这项工作称为椭球定位与定向。与大地水准面符合得最好的一个地球椭球体,称为参考椭球体,是地球形体三级逼近。说到这里,我们需要对这几个词汇做区分:球体:小比例尺,视作球体。椭球体/旋转椭球体:大比例尺,两个概念不区分。地球椭球体:限地球椭球体模型。参考