由微信公众号大学游乐场整理提供有关高等数学计算过程中所涉及到的数学公式(集锦)一、00101101lim0nnnmmxmanmbaxaxanmbxbxbnm(系数不为0的情况)二、重要公式(1)0sinlim1xxx(2)10lim1xxxe(3)lim()1nnaao(4)lim1nnn(5)limarctan2xx(6)limtan2xarcx(7)limarccot0xx(8)limarccotxx(9)lim0xxe(10)limxxe(11)0lim1xxx三、下列常用等价无穷小关系(0x)sinxxtanxxarcsinxxarctanxx211cos2xxln1xx1xex1lnxaxa11xx四、导数的四则运算法则uvuvuvuvuv2uuvuvvv五、基本导数公式⑴0c⑵1xx⑶sincosxx⑷cossinxx⑸2tansecxx⑹2cotcscxx⑺secsectanxxx⑻csccsccotxxx⑼xxee⑽lnxxaaa⑾1lnxx⑿1loglnxaxa⒀21arcsin1xx⒁21arccos1xx⒂21arctan1xx⒃21arccot1xx⒄1x⒅12xx六、高阶导数的运算法则1)nnnuxvxuxvx(2)nncuxcux由微信公众号大学游乐场整理提供(3)nnnuaxbauaxb(4)()0nnnkkknkuxvxcuxvx七、基本初等函数的n阶导数公式(1)!nnxn(2)naxbnaxbeae(3)lnnxxnaaa(4)sinsin2nnaxbaaxbn(5)coscos2nnaxbaaxbn(6)11!1nnnnanaxbaxb(7)11!ln1nnnnanaxbaxb八、微分公式与微分运算法则⑴0dc⑵1dxxdx⑶sincosdxxdx⑷cossindxxdx⑸2tansecdxxdx⑹2cotcscdxxdx⑺secsectandxxxdx⑻csccsccotdxxxdx⑼xxdeedx⑽lnxxdaaadx⑾1lndxdxx⑿1loglnxaddxxa⒀21arcsin1dxdxx⒁21arccos1dxdxx⒂21arctan1dxdxx⒃21arccot1dxdxx九、微分运算法则⑴duvdudv⑵dcucdu⑶duvvduudv⑷2uvduudvdvv十、基本积分公式⑴kdxkxc⑵11xxdxc⑶lndxxcx⑷lnxxaadxca⑸xxedxec⑹cossinxdxxc由微信公众号大学游乐场整理提供⑺sincosxdxxc⑻221sectancosdxxdxxcx⑼221csccotsinxdxxcx⑽21arctan1dxxcx⑾21arcsin1dxxcx十一、下列常用凑微分公式积分型换元公式1faxbdxfaxbdaxbauaxb11fxxdxfxdxux1lnlnlnfxdxfxdxxlnuxxxxxfeedxfedexue1lnxxxxfaadxfadaaxuasincossinsinfxxdxfxdxsinuxcossincoscosfxxdxfxdxcosux2tansectantanfxxdxfxdxtanux2cotcsccotcotfxxdxfxdxcotux21arctanarcnarcn1fxdxftaxdtaxxarctanux21arcsinarcsinarcsin1fxdxfxdxxarcsinux十二、补充下面几个积分公式tanlncosxdxxccotlnsinxdxxcseclnsectanxdxxxccsclncsccotxdxxxc2211arctanxdxcaxaa2211ln2xadxcxaaxa由微信公众号大学游乐场整理提供221arcsinxdxcaax22221lndxxxacxa十三、分部积分法公式⑴形如naxxedx,令nux,axdvedx形如sinnxxdx令nux,sindvxdx形如cosnxxdx令nux,cosdvxdx⑵形如arctannxxdx,令arctanux,ndvxdx形如lnnxxdx,令lnux,ndvxdx⑶形如sinaxexdx,cosaxexdx令,sin,cosaxuexx均可。十四、第二换元积分法中的三角换元公式(1)22axsinxat(2)22axtanxat(3)22xasecxat【特殊角的三角函数值】(1)sin00(2)1sin62(3)3sin32(4)sin12)(5)sin0(1)cos01(2)3cos62(3)1cos32(4)cos02)(5)cos1(1)tan00(2)3tan63(3)tan33(4)tan2不存在(5)tan0(1)cot0不存在(2)cot36(3)3cot33(4)cot02(5)cot不存在十五、三角函数公式1.两角和公式sin()sincoscossinABABABsin()sincoscossinABABABcos()coscossinsinABABABcos()coscossinsinABABAB由微信公众号大学游乐场整理提供tantantan()1tantanABABABtantantan()1tantanABABABcotcot1cot()cotcotABABBAcotcot1cot()cotcotABABBA2.二倍角公式sin22sincosAAA2222cos2cossin12sin2cos1AAAAA22tantan21tanAAA3.半角公式1cossin22AA1coscos22AA1cossintan21cos1cosAAAAA1cossincot21cos1cosAAAAA4.和差化积公式sinsin2sincos22abababsinsin2cossin22abababcoscos2coscos22abababcoscos2sinsin22abababsintantancoscosababab5.积化和差公式1sinsincoscos2ababab1coscoscoscos2ababab1sincossinsin2ababab1cossinsinsin2ababab6.万能公式22tan2sin1tan2aaa221tan2cos1tan2aaa22tan2tan1tan2aaa7.平方关系22sincos1xx22secn1xtax22csccot1xx由微信公众号大学游乐场整理提供8.倒数关系tancot1xxseccos1xxcsin1csxx9.商数关系sintancosxxxcoscotsinxxx十六、几种常见的微分方程1.可分离变量的微分方程:dyfxgydx,11220fxgydxfxgydy2.齐次微分方程:dyyfdxx3.一阶线性非齐次微分方程:dypxyQxdx解为:pxdxpxdxyeQxedxc三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/(1-tan^2A)Sin2A=2SinA•CosACos2A=Cos^2A--Sin^2A=2Cos^2A—1=1—2sin^2A三倍角公式sin3A=3sinA-4(sinA)^3;cos3A=4(cosA)^3-3cosAtan3a=tana•tan(π/3+a)•tan(π/3-a)半角公式sin(A/2)=√{(1--cosA)/2}cos(A/2)=√{(1+cosA)/2}tan(A/2)=√{(1--cosA)/(1+cosA)}cot(A/2)=√{(1+cosA)/(1-cosA)}tan(A/2)=(1--cosA)/sinA=sinA/(1+cosA)和差化积sin(a)+sin(b)=2sin[(a+b)/2]cos[(a-b)/2]sin(a)-sin(b)=2cos[(a+b)/2]sin[(a-b)/2]cos(a)+cos(b)=2cos[(a+b)/2]cos[(a-b)/2]cos(a)-cos(b)=-2sin[(a+b)/2]sin[(a-b)/2]tanA+tanB=sin(A+B)/cosAcosB积化和差sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]cos(a)sin(b)=1/2*[sin(a+b)-sin(a-b)]诱导公式由微信公众号大学游乐场整理提供sin(-a)=-sin(a)cos(-a)=cos(a)sin(π/2-a)=cos(a)cos(π/2-a)=sin(a)sin(π/2+a)=cos(a)cos(π/2+a)=-sin(a)sin(π-a)=sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)tgA=tanA=sinA/cosA万能公式sin(a)=[2tan(a/2)]/{1+[tan(a/2)]^2}cos(a)={1-[tan(a/2)]^2}/{1+[tan(a/2)]^2}tan(a)=[2tan(a/2)]/{1-[tan(a/2)]^2}其它公式a•sin(a)+b•cos(a)=[√(a^2+b^2)]*sin(a+c)[其中,tan(c)=b/a