信号与系统分析第二章答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1第二章部分习题参考答案2-5一个线性系统对()t的响应为()()(2)rhtutut(1)该系统是是不变的吗?(2)是因果的吗?解:(1)()()(2)()()()(2)()rrhtututfthtututft是时不变的。(2)()0020httt因果系统,有,本题,非零范围在当大于时是因果系统。2-6试求下列各函数1()ft与2()ft之卷积。121212(-)001(1)()()()()(0)()()()(-)()(-)11(1)0(2)()tttttttftutfteutftftfftdueutdeedeeetft,解:,2121212()()cos(45)()()()cos[()45]cos(45)(3)()(1)[()(1)]()(1)(2)()()tfttftfttdtfttututftututftft,解:,解:f2(τ)τ021f1(τ)τ01122222221211211()(-1)(-1)-2(-2)(-2)(-1)(-1)-(-2)(-2)2211-(-2)(-2)(-3)(-3)-(-2)(-2)(-3)(-3)22()*()()1,()0123,(1-)(1)21(1)--(12ttfttuttuttuttuttuttuttuttutftftfttftttdttftttt222-112222212111)-222123,(1-)(1)-221()2(1)-2(1-)(-1)211121---152223,()*()0.ttttttdtftttttttttttftft121221--(4)cos,(1)-(-1)()*()()(-)[(1)-(-1)][cos(-)]cos[(1)]-cos[(-1)]fttftttftftfftdtttdtt-212-212--2-2200(5)()(),()sin()()()*()()sin(-)(-)sin(-)sinttttttfteutfttutftftfteututdetdeed3-12-(-)--0022-(-)-33-2-3(6)()2[()-(-3)],()4()-(-2)0,()0.02,()2488-825,88()8(-)5,()0.tttttttttttfteututftututtfttftedeeetftedefteeetft2-8求阶跃响应为32()(21)()ttsteeut的LTI(线性时不变)系统对输入()()txteut的响应。解:()()*()rthtxt3232032323()[()],()[()]()(),LTI()()[][()]()()(-21)()(34)()(34)()()()*(34)()(3tttttttttthtTtstTutdtutdtdstdutTTthtdtdthteeteeuteeutrteuteeute而由于而对于系统有2-32043430043324)()()(34)34(34)[]433434734()[],043431243ttttttttttttteueutdeeeedeeedeeerteeeeeet2-9线性时不变系统输入()xt与零状态响应()yt之间关系为()()(2)ttytexd(1)求系统的()ht。解:-()()*()(-)(-2)tythtxthtd,(零状态响应)由已知条件,-(-)-(-)--()(-2)(-2)()tttytexdexutd令2,则24则-(--2)-()()(2)tytexutd比较,可得(2)()(2)thteut(2)求当()(1)(2)xtutut时的零状态响应。解:设激励为()ut的零状态响应为()gt有(2)()()(2)ttgthtdteud(2)(1)(2)221,2tttedeet由线性性质(叠加性)得(2)()[1](2)tgteut(1)(4)2()[(1)(2)][1](1)[1](4)ttsytgtgteuteut(3)用简便方法求题图2-9所示系统的响应()yt。图中()ht用(1)之结果,()xt与(2)相同。h(t)δ(t-1)h(t)Σy(t)x(t)+-题图2-9解:由时不变及叠加,有()()*()1()*()()*()(1)*()ythtxtthtxthtxthtxt由(2)的结果知,()*()().zshtxtyt(1)(4)(2)(5)()()(-1)[1](1)[1](4)[1](2)[1](5)]zszsttttytytyteuteuteuteut这里利用了卷积的延迟性:if12()*()()ftftft,then112212()*()()fttfttfttt。2-13用图解的方法粗略画出1()ft与2()ft卷积的波形,并且计算卷积积分12()()ftft。5(a)tf1(t)01atf2(t)02b解:12()[()(1)]()[()(2)](2)2bftaututfttututbt,1212()()()()()ftftftftft对进行翻转平移处理,不动有:ττ012batt-12200222112222110()001()24412()[(21)]2441()2223()[421)]244tttttttttftabababtftdtabababtftdtttabtabababtftdtt,,,,2(32)43()0abtttft,6(1)(-1)1212(-1)122(-1)22020()()()()()[()(1)]()2()[()(2)](2)2()()[()(2)](2)2[()(2)4tttttftftftftdftbattftddtbfttututbtbftfddututbdbutut也可用有;2(-1)112222](2)[()(2)](2)4()()()()[()(1)][()(2)](2)4[()(2)](2)44butbtututbutdftftftftdtbatttututbutababtututabut222(1)[(1)(3)](3)000141()1222(32)23403tututabuttabttabttabtttt71222112212121()[()(1)]()[()(2)]2()[()(2)-2)2(2)]2()()()[()]()0.5()()()()(()()())()(btftaututftututbfttuttututututtuttututtutfttfttftttftftftftft也可以这样解(利用卷积性质),(利用公式:;;22222222)()[()(1)][()(2)(2)2(2)]2(1)11()(1)(2)(2)(3)(3)2(2)(2)2(3)(3)2222211()(1)(1)[2224](2)[(442222abftututtuttututabttututtuttuttuttutababababtuttuttttutt222222223)2(3)](3)0()0101()41112()(21)(12)44423()(12)(4)(32)4443()(32694124tuttfttftabtabtftabtabtttabababtftttttabtftttttt当,,,,,)0(b)tf2(t)0btf1(t)01a1-1解:2222()()()()()(1)babftaftftft的相对于的,有因此可利用(a)的结论。1212122222()()()()()()(1)(1)()[()(2)](2)(1)[(1)(3)](3)44()(1)(1)[(1)(1)](1)[()(2)](44aabaaabaftftftftftftftftababfttututabuttututabutababftfttututabuttututabut设则而2)8(c)tf2(t)0b-2-2.5tf1(t)0123a解:12()[(2)(3)]()[(2.5)(2)]ftaututftbutut,1122121212()()()()()()()()(22.5)(22.5)(22)()(32.5(0.5)(32)(1)()()()[(0.5)(0.5)()(0ututtutfttfttftttftftabtutabtutabtutabtutftftftabtuttutt,且.5)(0.5)(1)(1)]0.5()00.50()(0.5)00.5()0.50.51()[(0.5)(0.5)](uttuttfttftabttftabtftabtttab当,,,,0.50.5)(1)1()[(0.5)(0.5)(1)]0tabttftabtttt,(d)tf1(t)0tf2(t)11-1011解:1()(1)(1)2()(1)(1)fttuttuttut2()()(1)ftutut利用:①()()()ututtut卷积性质:②2[()]()()2ttututut9③112212()()()fttfttfttt1222222222()()()(1)(1)2()(1)(1)()(1)111(1)(1)()(1)(1)()2221(1)(1)(2)(2)213(1)(1)22ftftfttuttuttutututtuttuttuttuttuttuttuttu2222222222231()(1)(1)(2)(2)22-1()01110()(1)(21)2213101()(1)222133112()(1)(1)2222222()ttuttuttfttftttttfttttttftttttttft当,,,,,22221331(1)(1)(2)02222tttt(e)tf1(t)0tf2(t)21-101-2δ(t-2)δ(t+2

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功