一、捕获光能的色素和结构1、实验:绿叶中色素的提取和分离原理:叶绿体中的色素可以溶解在无水乙醇中,可以用来提取色素。色素在层析液中的溶解度不同,在滤纸上的扩散速度有差别,可以用来分离色素。方法与步骤1.提取色素称取5g左右的鲜叶,剪碎,放入研钵中。加少许的二氧化硅(充分研磨)和碳酸钙(防止色素被破坏)与10ml无水乙醇。在研钵中快速研磨。将研磨液进行过滤。方法与步骤2.制备滤纸条方法与步骤3.画滤液细线2方法与步骤4.分离色素实验结果:绿叶中的色素叶绿素类胡萝卜素(含量约3/4)(含量约1/4)叶绿素a(蓝绿色)叶绿素b(黄绿色)胡萝卜素(橙黄色)叶黄素(黄色)胡萝卜素叶黄素叶绿素a叶绿素b叶绿素溶液吸收可见光,用于光合作用2.色素的功能:色素的吸收光谱图400500600700nm10050吸收光能百分比叶绿素类胡萝卜素可见光区叶绿素:吸收蓝紫光和红光类胡萝卜素:吸收蓝紫光叶片为什么是绿色?叶绿体结构模式图外膜内膜基粒基质每个基粒都由一个个圆饼状的囊状结构堆叠而成。这些囊状结构称为类囊体。吸收光能的四种色素就分布在类囊体的薄膜上。而每个基粒都含有两个以上的类囊体,多者可达100个以上。叶绿体内有如此多的基粒和类囊体,极大地扩大了受光面积。4、资料分析:叶绿体的功能1装片中好氧细菌向叶绿体被光束照射到的部位集中。装片中好氧细菌分布在叶绿体所有受光部位的周围。氧是由叶绿体释放出来的,叶绿体是光合作用的场所。2结论:叶绿体的被光束照射到的部位是光合作用的场所结论:现象:现象:没有空气黑暗极细光束完全光照§4能量之源——光与光合作用讨论:恩格尔曼实验在设计上有什么巧妙之处?(1)、用水绵作实验材料,有细而长的带状叶绿体,螺旋状分布在细胞中,便于观察和分析研究。(2)、将临时装片置于黑暗且没有空气的环境中,排除了环境中光线和O2的影响,从而确保实验能顺利进行。(3)、用极细的光束照射,并且用好氧菌进行检测,能准确的判断水绵细胞中放O2部位。(4)、进行黑暗(局部光照)与曝光的对照实验,从而明确实验结果完全是由光照引起的。结论:•叶绿体是进行光合作用的场所,它内部的巨大膜表面上,不仅分布着许多吸收光能的色素分子,还有许多进行光合作用所必需的酶。二、光合作用的原理和应用光合作用的探究历程(P101-102)结论:水分是植物建造自身的原料。17世纪海尔蒙特栽培的柳树实验结论:植物可以更新空气有人重复了普利斯特利的实验,得到相反的结果,所以有人认为植物也能使空气变污浊?1779年,荷兰英格豪斯普利斯特利的实验只有在阳光照射下才能成功;植物体只有绿叶才能更新空气。到1785年,发现了空气的组成,人们才明确绿叶在光下放出的是O2,吸收的是CO2。光能化学能储存在什么物质中?德国梅耶1864年,德国萨克斯实验黑暗处理一昼夜让一张叶片一半曝光一半遮光绿叶在光下制造淀粉。用碘蒸气处理这片叶,发现曝光的一半呈深蓝色,遮光的一半则没有颜色变化。光合作用释放的O2来自CO2还是H2O?第一组光合作用产生的O2来自于H2O。H2180C02H20C18O2第二组180202美国鲁宾和卡门实验(同位素标记法)光合作用产生的有机物又是怎样合成的?美国卡尔文用14C标记14CO2,供小球藻进行光合作用,探明了CO2中的C的去向,称为卡尔文循环。绿色植物通过叶绿体,利用光能,把CO2和H2O转化成储存能量的有机物,并释放出O2的过程。反应物、条件、场所、生成物CO2+H2O(CH2O)+O2光能叶绿体糖类年代科学家结论1771普利斯特利植物可以更新空气1779英格豪斯只有在光照下只有绿叶才可以更新空气1845R.梅耶植物在光合作用时把光能转变成了化学能储存起来1864萨克斯绿色叶片光合作用产生淀粉1880恩格尔曼氧由叶绿体释放出来。叶绿体是光合作用的场所。1939鲁宾卡门光合作用释放的氧来自水。20世纪40代卡尔文光合产物中有机物的碳来自CO2光合作用化学反应式:光合作用过程光能叶绿体CO2+H2*O(CH2O)+*O2(1)光合作用分为哪几个阶段?分类依据是什么?(2)每个阶段反应的条件、场所、物质变化、能量变化如何?光反应叶绿体中的色素光能H2O水在光下分解O2[H]光、酶、色素过程:场所:类囊体的薄膜上物质H2O光[H]+O2ADP+Pi+光能酶ATP能量光能ATP中活跃化学能ADP+Pi酶ATP暗反应co2C5固定2c3[H]供氢酶(CH2O)[糖类]场所:条件:过程:叶绿体基质酶多种酶参加催化co2+C5酶2c32c3酶(CH2O)C5[H]ATPATP酶ADP+Pi+能量物质能量ATP中活跃的化学能转化为糖类中稳定的化学能还原酶ATP供能ADP+Pi色素分子可见光C52C3ADP+PiATP2H2OO24[H]多种酶酶(CH2O)CO2吸收光解能固定还原酶光反应暗反应光合作用总过程:光反应和暗反应的比较场所条件物质变化能量变化光反应暗反应联系基粒片层结构薄膜叶绿体基质中光、色素、酶、水、ADPPi[H]、ATP、酶、CO2、C5水的光解ATP的生成CO2的固定C3的还原光能→ATP中活跃的化学能ATP中活跃的化学能→有机物中稳定的化学能1、光反应为暗反应准备了还原剂[H]和能量ATP;2、暗反应为光反应补充消耗掉的ADP和Pi。叶绿体处不同条件下,C3、C5、[H]、ATP以及(CH2O)合成量的动态变化条件C3C5[H]和ATP(CH2O)合成量停止光照CO2供应不变增加下降减少或没有减少或没有光照不变停止CO2供应减少增加增加减少或没有光照不变CO2供应不变(CH2O)运输受阻增加减少增加减少原料和产物的对应关系:(CH2O)CHOCO2CO2H2OO2H2O能量的转移途径:碳的转移途径:光能ATP中活跃的化学能(CH2O)中稳定的化学能CO2C3(CH2O)光合作用原理的应用影响光合作用强度的因素?CO2的浓度,光照的长短与强弱;光的成分;温度的高低、必需矿物质元素、水分等。例:适当提高CO2的浓度(温室大棚),增加光照时间和光照强度,农作物间距合理,选择适当的光源等。若甲曲线代表阳生植物,则乙曲线代表阴生植物。BC段:随光照强度不断加强,光合作用强度不断加强,C点为光饱和点。A点:光照强度为0此时只进行细胞呼吸,释放的二氧化碳量可表示此时细胞呼吸的强度。AB段:随光照强度增强,光合作用强度增强,二氧化碳释放量逐渐减少,因细胞呼吸释放二氧化碳一部分用于光合作用,细胞呼吸强度大于光合作用强度。B点细胞呼吸释放的二氧化碳全部用于光合作用,即光合作用强度等于细胞呼吸强度。B点称为光补偿点(1)光照强度(2)二氧化碳浓度①曲线分析在一定浓度范围内,随二氧化碳浓度的增加,植物的光合作用强度加强。A点:表示进行光合作用所需二氧化碳的最低浓度。B点:表示二氧化碳饱和点,超过该浓度,光合强度不再增加。②应用:对农田里的农作物应合理密植,“正其行,通其风;对温室作物来说,应增施农家肥料或使用二氧化碳发生器。BA光合作用强度(3)温度①曲线分析光合作用是在多种酶的催化下进行的,温度直接影响酶的活性AB段:在一定温度范围内,随温度的升高,光合作用逐渐增强B点表示光合作用的最适温度,此时光合速率最高;BC段表示,超过了光合作用的最适温度,随温度的升高,光合作用强度逐渐下降。②应用:适时播种;温室栽培中要保持昼夜温差。光合作用强度(4)必需矿质元素供应对光合作用的影响①影响:矿质元素直接或间接影响光合作用。一定范围内N、P、K等矿质元素越多,光合速率越快。N是构成叶绿素、酶、ATP等的元素;P是构成ATP等的元素,参与叶绿体膜的构成;Mg是构成叶绿素的元素;K影响糖类的合成和运输。②应用:合理施肥。(5)水对光合作用的影响①影响:水尽管是光合作用的原料和化学反应的介质,但是水对光合作用的影响在多数情况下是间接影响。缺水(蒸腾作用过强)导致气孔关闭,限制二氧化碳进入叶片;缺水引起叶片内淀粉水解加强,可溶性糖过多,光合产物输出缓慢等。②应用:预防干旱,合理灌溉。自养生物:能够直接把从外界环境摄取的无机物转变成为自身的组成物质,并储存了能量的一类生物。四、化能合成作用异养生物:不能直接利用无机物制成有机物,只能把从外界摄取的现成的有机物转变成自身的组成物质,并储存了能量的一类生物。能够利用体外环境中的某些无机物氧化时所释放的能量来制造有机物的合成作用例如:硝化细菌、硫细菌、铁细菌等少数种类的细菌2NH3+3O22HNO2+2H2O+能量硝化细菌2HNO2+O22HNO3+能量硝化细菌6CO2+6H2O2C6H12O6+6O2能量光合作用与有氧呼吸的比较光反应暗反应有氧呼吸反应场所叶绿体基粒类囊体薄膜上叶绿体基质细胞质基质和线粒体反应条件光、色素和酶ATP、[H]、酶O2、酶物质变化水的光解ATP的合成CO2的固定CO2的还原葡萄糖的初步分解丙酮酸彻底分解[H]的氧化能量变化光能转化为活跃的化学能活跃的化学能转化为稳定的化学能稳定的化学能转化为活跃的化学能影响因子光照强度、CO2浓度、T、矿质元素、H2OT、O2总反应式光合作用呼吸作用场所条件原料产物物质变化能量变化结论:含叶绿体的细胞所有的活细胞必须有光有光无光均可有机物和氧二氧化碳和水有机物和氧二氧化碳和水制造有机物储存能量释放能量分解有机物二者既相互对立,又相互_____。依存影响光能利用率的因素在生产中的应用:延长光合作用时间增加光合作用面积光能利用率光合作用效率(轮作)(合理密植:间种、套种)1、光照强度、光质2、CO2浓度3、温度4、矿质元素(合理施肥)5、水(合理灌溉)(1)单位时间内光合作用产生糖的数量(2)单位时间光合作用吸收二氧化碳的量(3)单位时间光合作用放出的氧气的量