如何利用三角形的中线来构造全等三角形?复习:可以利用倍长中线法,即把中线延长一倍,来构造全等三角形。如图,若AD为△ABC的中线,必有结论:ABCDE12延长AD到E,使DE=AD,连结BE(也可连结CE)。△ABD≌△ECD,∠1=∠E,∠B=∠2,EC=AB,CE∥AB。可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。如何利用三角形的角平分线来构造全等三角形?问题:如图,在△ABC中,AD平分∠BAC。方法一:ABCDE必有结论:在AB上截取AE=AC,连结DE。△ADE≌△ADC。ED=CD,3*21∠AED=∠C,∠ADE=∠ADC。方法二:ABCDF延长AC到F,使AF=AB,连结DF。必有结论:△ABD≌△AFD。BD=FD,如何利用三角形的角平分线来构造全等三角形?问题:3*21如图,在△ABC中,AD平分∠BAC。可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。∠B=∠F,∠ADB=∠ADF。如何利用三角形的角平分线来构造全等三角形?问题:ABCDMN方法三:作DM⊥AB于M,DN⊥AC于N。必有结论:△AMD≌△AND。DM=DN,3*21如图,在△ABC中,AD平分∠BAC。可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。AM=AN,∠ADM=∠AND。(还可以用“角平分线上的点到角的两边距离相等”来证DM=DN)证明:例1已知:如图,在四边形ABCD中,BD是∠ABC的角平分线,AD=CD,求证:∠A+∠C=180°DABCE在BC上截取BE,使BE=AB,连结DE。∵BD是∠ABC的角平分线(已知)∴∠1=∠2(角平分线定义)在△ABD和△EBD中∵AB=EB(已知)∠1=∠2(已证)BD=BD(公共边)∴△ABD≌△EBD(S.A.S)1243∵∠3+∠4=180°(平角定义),∠A=∠3(已证)∴∠A+∠C=180°(等量代换)321*∴∠A=∠3(全等三角形的对应角相等)∵AD=CD(已知),AD=DE(已证)∴DE=DC(等量代换)∴∠4=∠C(等边对等角)AD=DE(全等三角形的对应边相等)证明:例1已知:如图,在四边形ABCD中,BD是∠ABC的角平分线,AD=CD,求证:∠A+∠C=180°DABCF延长BA到F,使BF=BC,连结DF。∵BD是∠ABC的角平分线(已知)∴∠1=∠2(角平分线定义)在△BFD和△BCD中∵BF=BC(已知)∠1=∠2(已证)BD=BD(公共边)∴△BFD≌△BCD(S.A.S)1243∵∠F=∠C(已证)∴∠4=∠C(等量代换)321*∴∠F=∠C(全等三角形的对应角相等)∵AD=CD(已知),DF=DC(已证)∴DF=AD(等量代换)∴∠4=∠F(等边对等角)∵∠3+∠4=180°(平角定义)∴∠A+∠C=180°(等量代换)DF=DC(全等三角形的对应边相等)证明:例1已知:如图,在四边形ABCD中,BD是∠ABC的角平分线,AD=CD,求证:∠A+∠C=180°DABCM作DM⊥BC于M,DN⊥BA交BA的延长线于N。∵BD是∠ABC的角平分线(已知)∴∠1=∠2(角平分线定义)∵DN⊥BA,DM⊥BC(已知)∴∠N=∠DMB=90°(垂直的定义)在△NBD和△MBD中∵∠N=∠DMB(已证)∠1=∠2(已证)BD=BD(公共边)∴△NBD≌△MBD(A.A.S)12∴∠4=∠C(全等三角形的对应角相等)N43321*∴ND=MD(全等三角形的对应边相等)∵DN⊥BA,DM⊥BC(已知)∴△NAD和△MCD是Rt△在Rt△NAD和Rt△MCD中∵ND=MD(已证)AD=CD(已知)∴Rt△NAD≌Rt△MCD(H.L)∵∠3+∠4=180°(平角定义),∠A=∠3(已证)∴∠A+∠C=180°(等量代换)证明:例1已知:如图,在四边形ABCD中,BD是∠ABC的角平分线,AD=CD,求证:∠A+∠C=180°DABCM作DM⊥BC于M,DN⊥BA交BA的延长线于N。12N43321*∵BD是∠ABC的角平分线(已知)DN⊥BA,DM⊥BC(已知)∴ND=MD(角平分线上的点到这个角的两边距离相等)∴∠4=∠C(全等三角形的对应角相等)∵DN⊥BA,DM⊥BC(已知)∴△NAD和△MCD是Rt△在Rt△NAD和Rt△MCD中∵ND=MD(已证)AD=CD(已知)∴Rt△NAD≌Rt△MCD(H.L)∵∠3+∠4=180°(平角定义)∠A=∠3(已证)∴∠A+∠C=180°(等量代换)练习1如图,已知△ABC中,AD是∠BAC的角平分线,AB=AC+CD,求证:∠C=2∠BABCDE1221证明:在AB上截取AE,使AE=AC,连结DE。∵AD是∠BAC的角平分线(已知)∴∠1=∠2(角平分线定义)在△AED和△ACD中∵AE=AC(已知)∠1=∠2(已证)AD=AD(公共边)∴△AED≌△ACD(S.A.S)3∴∠B=∠4(等边对等角)4*∴∠C=∠3(全等三角形的对应角相等)又∵AB=AC+CD=AE+EB(已知)∴EB=DC=ED(等量代换)∵∠3=∠B+∠4=2∠B(三角形的一个外角等于和它不相邻的两个内角和)∴∠C=2∠B(等量代换)ED=CD(全等三角形的对应边相等)练习1如图,已知△ABC中,AD是∠BAC的角平分线,AB=AC+CD,求证:∠C=2∠BABCDF12证明:延长AC到F,使CF=CD,连结DF。∵AD是∠BAC的角平分线(已知)∴∠1=∠2(角平分线定义)∵AB=AC+CD,CF=CD(已知)∴AB=AC+CF=AF(等量代换)∵∠ACB=2∠F(三角形的一个外角等于和它不相邻的两个内角和)∴∠ACB=2∠B(等量代换)321*在△ABD和△AFD中∵AB=AF(已证)∠1=∠2(已证)AD=AD(公共边)∴△ABD≌△AFD(S.A.S)∴∠F=∠B(全等三角形的对应角相等)∵CF=CD(已知)∴∠B=∠3(等边对等角)练习2如图,已知直线MN∥PQ,且AE平分∠BAN、BE平分∠QBA,DC是过E的任意线段,交MN于点D,交PQ于点C。求证:AD+AB=BC。证明:延长AE,交直线PQ于点F。*30**2221ABCDEMNPQ1234F5练习2如图,已知直线MN∥PQ,且AE平分∠BAN、BE平分∠QBA,DC是过E的任意线段,交MN于点D,交PQ于点C。求证:AD+AB=BC。证明:延长BA到点G,使得AG=AD,连结EG。*30**2221ABCDEMNPQ1234G练习2如图,已知直线MN∥PQ,且AE平分∠BAN、BE平分∠QBA,DC是过E的任意线段,交MN于点D,交PQ于点C。求证:AD+AB=BC。证明:延长BA到点G,使得AG=AD,连结EG。*30**2221ABCDEMNPQ1234G练习3已知:如图在Rt△ABC中,∠BAC=90°,AE⊥BC,BD是∠ABC的角平分线,GF∥BC,求证:AD=FC。ABCDEH12证明:过D作DH⊥BC,垂足为H。GF*30**如何利用三角形的角平分线来构造全等三角形?小结:(3)作DM⊥AB于M,DN⊥AC于N。(1)在AB上截取AE=AC,连结DE。(2)延长AC到F,使AF=AB,连结DF。ABCDEFMN必有结论:△ADE≌△ADC。必有结论:△ABD≌△AFD。必有结论:△AMD≌△AND。可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。如图,在△ABC中,AD为∠BAC的角平分线。*30**如何利用三角形的高来构造全等三角形?如图,在△ABC中,AD⊥BC,∠ABC=2∠C。求证:AB+BD=CD提示:(1)延长DB到点E,使BE=AB,连结AE。(2)在DC上截取点E,使DE=BD,连结AE。ABCD*0**