第一节温度测量仪表1.1概述1.2热电偶温度计1.3热电阻温度计通过本节的学习了解温度传感器的分类和发展趋势;掌握热电偶定律;掌握热敏电阻不同类型的特点及应用场合;第一节概论温度传感器是实现温度检测和控制的重要器件。在种类繁多的传感器中,温度传感器是应用最广泛、发展最快的传感器之一。温度是与人类生活息息相关的物理量。在2000多年前,就开始为检测温度进行了各种努力,并开始使用温度传感器检测温度。人类社会中,工业、农业、商业、科研、国防、医学及环保等部门都与温度有着密切的关系。工业生产自动化流程,温度测量点要占全部测量点的一半左右。温度是反映物体冷热状态的物理参数。因此,人类离不开温度,当然也离不开温度传感器。一、温度的基本概念热平衡:温度是描述热平衡系统冷热程度的物理量。分子物理学:温度反映了物体内部分子无规则运动的剧烈程度。能量:温度是描述系统不同自由度间能量分配状况的物理量。表示温度大小的尺度是温度的标尺,简称温标。1热力学温标2国际实用温标3摄氏温标4华氏温标如果在式中再规定一个条件,就可以通过卡诺循环中的传热量来完全地确定温标。1954年,国际计量会议选定水的三相点为273.16,并以它的1/273.16定为一度,这样热力学温标就完全确定了,即T=273.16(Q1/Q2)。1848年威廉·汤姆首先提出以热力学第二定律为基础,建立温度仅与热量有关,而与物质无关的热力学温标。因是开尔文总结出来的,故又称开尔文温标,用符号K表示。它是国际基本单位制之一。根据热力学中的卡诺定理,如果在温度T1的热源与温度为T2的冷源之间实现了卡诺循环,则存在下列关系式1.热力学温标Q1——热源给予热机的传热量Q2——热机传给冷源的传热量2121QQTT为解决国际上温度标准的同意及实用问题,国际上协商决定,建立一种既能体现热力学温度(即能保证一定的准确度),又使用方便、容易实现的温标,即国际实用温标InternationalPracticalTemperatureScaleof1968(简称IPTS-68),又称国际温标。2.国际实用温标注意:摄氏温度的分度值与开氏温度分度值相同,即温度间隔1K=1℃。T0是在标准大气压下冰的融化温度,T0=273.15K。。1968年国际实用温标规定热力学温度是基本温度,用t表示,其单位是开尔文,符号为K。1K定义为水三相点热力学温度的1/273.16,水的三相点是指纯水在固态、液态及气态三项平衡时的温度,热力学温标规定三相点温度为273.16K,这是建立温标的惟一基准点。3.摄氏温标是工程上最通用的温度标尺。摄氏温标是在标准大气压(即101325Pa)下将水的冰点与沸点中间划分一百个等份,每一等份称为摄氏一度(摄氏度,℃),一般用小写字母t表示。与热力学温标单位开尔文并用。摄氏温标与国际实用温标温度之间的关系如下:4.华氏温标目前已用得较少,它规定在标准大气压下冰的融点为32华氏度,水的沸点为212华氏度,中间等分为180份,每一等份称为华氏一度,符号用℉,它和摄氏温度的关系如下:T=t+273.15Kt=T-273.15℃m=1.8n+32℉n=5/9(m-32)℃二.温度传感器的分类及特点接触式温度传感器非接触式温度传感器接触式温度传感器的特点:传感器直接与被测物体接触进行温度测量,由于被测物体的热量传递给传感器,降低了被测物体温度,特别是被测物体热容量较小时,测量精度较低。因此采用这种方式要测得物体的真实温度的前提条件是被测物体的热容量要足够大。非接触式温度传感器主要是利用被测物体热辐射而发出红外线,从而测量物体的温度,可进行遥测。其制造成本较高,测量精度却较低。优点是:不从被测物体上吸收热量;不会干扰被测对象的温度场;连续测量不会产生消耗;反应快等。温差热电偶(简称热电偶)是目前温度测量中使用最普遍的传感元件之一。它除具有结构简单,测量范围宽、准确度高、热惯性小,输出信号为电信号便于远传或信号转换等优点外,还能用来测量流体的温度、测量固体以及固体壁面的温度。微型热电偶还可用于快速及动态温度的测量。1.2热电偶温度计★热电偶的工作原理★热电偶回路的性质★热电偶的常用材料与结构★冷端处理及补偿★热电偶的选择、安装使用和校验两种不同的导体或半导体A和B组合成如图所示闭合回路,若导体A和B的连接处温度不同(设T>T0),则在此闭合回路中就有电流产生,也就是说回路中有电动势存在,这种现象叫做热电效应。这种现象早在1821年首先由西拜克(See-back)发现,所以又称西拜克效应。一、热电偶的工作原理回路中所产生的电动势,叫热电势。热电势由两部分组成,即温差电势和接触电势。热端自由端1.接触电势+ABTeAB(T)-BAABNNekTTeln)(eAB(T)——导体A、B结点在温度T时形成的接触电动势;e——单位电荷,e=1.6×10-19C;k——波尔兹曼常数,k=1.38×10-23J/K;NA、NB——导体A、B在温度为T时的电子密度。接触电势的大小与温度高低及导体中的电子密度有关。AeA(T,To)ToTeA(T,T0)——导体A两端温度为T、T0时形成的温差电动势;T,T0——高低端的绝对温度;σA——汤姆逊系数,表示导体A两端的温度差为1℃时所产生的温差电动势,例如在0℃时,铜的σ=2μV/℃。2.温差电势),(0TTeA温差电势原理图由导体材料A、B组成的闭合回路,其接点温度分别为T、T0,如果T>T0,则必存在着两个接触电势和两个温差电势,回路总电势:3.回路总电势),(),()()(),(0000TTeTTeTeTeTTEBAABABABNAT、NAT0——导体A在结点温度为T和T0时的电子密度;NBT、NBT0——导体B在结点温度为T和T0时的电子密度;σA、σB——导体A和B的汤姆逊系数。根据电磁场理论得结论(4点):EAB(T,T0)=EAB(T)-EAB(T0)=f(T)-C=g(T)由于NA、NB是温度的单值函数dTNNekTTETTBAAB0ln),(0在工程应用中,常用实验的方法得出温度与热电势的关系并做成表格,以供备查。由公式可得:EAB(T,T0)=EAB(T)-EAB(T0)=EAB(T)-EAB(0)-[EAB(T)-EAB(T0)]=EAB(T,0)-EAB(T0,0)热电偶的热电势,等于两端温度分别为T和零度以及T0和零度的热电势之差。导体材料确定后,热电势的大小只与热电偶两端的温度有关。如果使EAB(T0)=常数,则回路热电势EAB(T,T0)就只与温度T有关,而且是T的单值函数,这就是利用热电偶测温的原理。只有当热电偶两端温度不同,热电偶的两导体材料不同时才能有热电势产生。热电偶回路热电势只与组成热电偶的材料及两端温度有关;与热电偶的长度、粗细无关。只有用不同性质的导体(或半导体)才能组合成热电偶;相同材料不会产生热电势,因为当A、B两种导体是同一种材料时,ln(NA/NB)=0,也即EAB(T,T0)=0。对于有几种不同材料串联组成的闭合回路,接点温度分别为T1、T2、…、Tn,冷端温度为零度的热电势。其由一种均质导体组成的闭合回路,不论其导体是否存在温度梯度,回路中没有电流(即不产生电动势);反之,如果有电流流动,此材料则一定是非均质的,即热电偶必须采用两种不同材料作为电极。二、热电偶回路的性质1.均质导体定律E总=EAB(T)+EBC(T)+ECA(T)=0三种不同导体组成的热电偶回路TABCTT2.中间导体定律一个由几种不同导体材料连接成的闭合回路,只要它们彼此连接的接点温度相同,则此回路各接点产生的热电势的代数和为零。如图,由A、B、C三种材料组成的闭合回路,则两点结论:l)将第三种材料C接入由A、B组成的热电偶回路,如图,则图a中的A、C接点2与C、A的接点3,均处于相同温度T0之中,此回路的总电势不变,即同理,图b中C、A接点2与C、B的接点3,同处于温度T0之中,此回路的电势也为:T2T1AaBC23EABaAT023ABEABT1T2CT0EAB(T1,T2)=EAB(T1)-EAB(T2)(a)(b)T0T0EAB(T1,T2)=EAB(T1)-EAB(T2)第三种材料接入热电偶回路图ET0T0TET0T1T1T根据上述原理,可以在热电偶回路中接入电位计E,只要保证电位计与连接热电偶处的接点温度相等,就不会影响回路中原来的热电势,接入的方式见下图所示。热电偶材料应满足:物理性能稳定,热电特性不随时间改变;化学性能稳定,以保证在不同介质中测量时不被腐蚀;热电势高,导电率高,且电阻温度系数小;便于制造;复现性好,便于成批生产。三、热电偶的常用材料与结构(二)常用热电偶的结构类型1.工业用热电偶下图为典型工业用热电偶结构示意图。它由热电偶丝、绝缘套管、保护套管以及接线盒等部分组成。实验室用时,也可不装保护套管,以减小热惯性。工业热电偶结构示意图1-接线盒;2-保险套管3―绝缘套管4―热电偶丝1234(a)(b)(c)(d)1322.铠装式热电偶(又称套管式热电偶)优点是小型化(直径从12mm到0.25mm)、寿命、热惯性小,使用方便。测温范围在1100℃以下的有:镍铬—镍硅、镍铬—考铜铠装式热电偶。断面如图所示。它是由热电偶丝、绝缘材料,金属套管三者拉细组合而成一体。又由于它的热端形状不同,可分为四种型式如图。图3.2-12铠装式热电偶断面结构示意图1—金属套管;2—绝缘材料;3—热电极(a)—碰底型;(b)—不碰底型;(c)—露头型;(d)—帽型3.快速反应薄膜热电偶用真空蒸镀等方法使两种热电极材料蒸镀到绝缘板上而形成薄膜装热电偶。如图,其热接点极薄(0.01~0.lμm)4123快速反应薄膜热电偶1—热电极;2—热接点;3—绝缘基板;4—引出线因此,特别适用于对壁面温度的快速测量。安装时,用粘结剂将它粘结在被测物体壁面上。目前我国试制的有铁—镍、铁—康铜和铜—康铜三种,尺寸为60×6×0.2mm;绝缘基板用云母、陶瓷片、玻璃及酚醛塑料纸等;测温范围在300℃以下;反应时间仅为几ms。方法计算修正法冰点槽法零点迁移法补偿电桥法补偿导线法四、冷端处理及补偿原因热电偶热电势的大小是热端温度和冷端的函数差,为保证输出热电势是被测温度的单值函数,必须使冷端温度保持恒定;热电偶分度表给出的热电势是以冷端温度0℃为依据,否则会产生误差。1.冰点槽法把热电偶的参比端置于冰水混合物容器里,使T0=0℃。这种办法仅限于科学实验中使用。为了避免冰水导电引起两个连接点短路,必须把连接点分别置于两个玻璃试管里,浸入同一冰点槽,使相互绝缘。mVABA’B’TCC’仪表铜导线试管补偿导线热电偶冰点槽冰水溶液四、冷端处理及补偿T02.计算修正法用普通室温计算出参比端实际温度TH,利用公式计算例用铜-康铜热电偶测某一温度T,参比端在室温环境TH中,测得热电动势EAB(T,TH)=1.999mV,又用室温计测出TH=21℃,查此种热电偶的分度表可知,EAB(21,0)=0.832mV,故得EAB(T,0)=EAB(T,21)+EAB(21,T0)=1.999+0.832=2.831(mV)再次查分度表,与2.831mV对应的热端温度T=68℃。注意:既不能只按1.999mV查表,认为T=49℃,也不能把49℃加上21℃,认为T=70℃。EAB(T,T0)=EAB(T,TH)+EAB(TH,T0)例用动圈仪表配合热电偶测温时,如果把仪表的机械零点调到室温TH的刻度上,在热电动势为零时,指针指示的温度值并不是0℃而是TH。而热电偶的冷端温度已是TH,则只有当热端温度T=TH时,才能使EAB(T,TH)=0,这样,指示值就和热端的实际温度一致了。这种办法非常简便,而且一劳永逸,只要冷端温度总保持在TH不变,指示值就永远正确。3.零点迁移法应用领域:如果冷端不是0℃,但十分稳定(如恒温车间或有空调的场所)。实质:在测量结果中人为地加一个恒定值,因为冷端温度稳定不变,电动势EAB(TH,0)是常数,利用指示仪表