预测方法及应用

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2017小学期数学建模专题讲座13:10:541西安交通大学能源与动力工程学院热流科学与工程教育部重点实验室2017年6月热科学与工程国际合作联合实验室最近几年,在全国大学生数学建模竞赛常常出现预测模型或是与预测有关的题目,例如疾病的传播,雨量的预报等。什么是预测模型?如何预测?有那些方法?预测作为一种探索未来的活动早在古代已经出现,但作为一门科学的预测学,是在科学技术高度发达的当今才产生的。“预测”是来自古希腊的术语。我国也有两句古语:“凡事预则立,不预则废”,“人无远虑,必有近忧”。卜卦、算命都是一种预测。中国古代著名著作“易经”就是一种专门研究预测的书,现在研究易经的人也不少。预测是决策的重要的前期工作。决策是指导未来的,未来既是决策的依据,又是决策的对象,研究未来和预测未来是实现决策科学化的重要前提。数据是预测工作的前提和重要依据,预测不能是臆造和空想,任何事物的发展都有一定的规律,认真研究预测对象并充分考察预测对象所处的环境,以系统分析的方法对过去和现在的数据进行总结,从中找出规律,便可科学地推断未来。数据在预测中主要有两个作用:(1)用于确定由某些历史观察点组成的行为模型;(2)在因果模型预测中确定自变量的未来值。按时态分,数据可分为历史数据和现实数据;按预测对象分,可分为内部数据和外部数据;就收集的手段分,可分为第一手数据和第二手数据。第一手数据,包括以各种形式初次收集的数据。收集第一手数据的途径包括:抽样调查,连续调查,或全面调查。第二手数据多为已经公布和发表的资料,易于获取,代价低,数据精度也有一定的保证。其缺点是数据可能不能直接适用于预测情况。因此,常常需要对已公布的数据进行修正和处理,使其适应于预测需要。建模不仅需要大量的数据,同时数据必须可靠,并适合建模的要求。这些数据虽然是历史的客观写照,但有可能是失真的数据。对于失真的数据,以及不符合建模的数据,必须通过分析,加以适当处理。处理的原则(1)准确,处理后的数据能正确反映事物发展的未来趋势和状况;(2)及时,数据的处理要及时;(3)适用,处理的数据能满足建模的需要;(4)经济,要尽量减少数据处理的费用,以降低预测成本;(5)一致,处理的数据在整个比较性。使用期间内必须是一致的,具有可比较性处理方法(1)判别法通过对历史数据的判断,选择其中可代表整个预测过程中很可能发生的模式的数据作为建模数据;(2)剔除法如果数据量比较大,且非必须具备连续的数据量,这时可剔除数据中受随机干扰的异常值;(3)平均值法在数据比较少或需要连续数据时,则可采取平均值法对数据进行处理。对于时间序列数据,可用异常值前后两期数据的算术平均值或几何平均值对异常值进行修正。通常当历史数据的发展趋势呈线性时,取算求平均值,当发展趋势呈非线性时,取几何平均值。在利用因果关系建立数学模型时,为去掉偶然因素对建立模型的影响,可采用下面的计算方法对统计数据中的异常数据加以修正:当x与y之间为线性因果关系时,取当x与y之间为非线性因果关系时,取(4)拉平法由于条件发生变化,常常使一些厉史数据不能反映现时的情况,例如,大型钢铁厂、化肥厂、或油气田的建成投产或开发,可以使产量猛增,这时历史数据将发生突变,出现一个转折,如用这类数据建模,则需要处理。这时拉平法是一种较好的方法。它的原理是对转折点前的数据加一个适当的量值,使其与折点后的数据走向一致。(5)比例法销售条件与环境的变化常常会引起一个企业产品市场销售比例的改变。当比例变化较大时,说明销售条件与环境对销售的影响己超过其他因素对销售的影响,也说明以前的销售统计数据所体现出的销售发展规律不再适用之于目前的情况了。如果仍然利用这些数据建立预测模型,将无法体现销售条件和环境变化后的销售量变化的规律,用这样的模型进行预测,将会造成较大的误差。因此,如果还想利用这些数据建立模型,进行预测,就应该把它们处理成能体现条件与环境发生变化之后的情况的数据。对于这类数据,比例法就是一种比较有效的处理方法。(6)移动平均和指数平滑法如果原始数据总体走向具有一定规律性,但因受随机因素干扰,数据离散度很大,采用平均值法也难以处理。这时可采用一次、二次、甚至三次移动平均和指数平滑对数据进行平滑,用平滑的数据建模。在分解预测时,为处理季节数据,则必须采用高次幂的移动平均法,对数据平滑。(7)差分法有些模型,例如鲍克斯-詹金斯模型只能处理平稳数据,如果原始数据为非平稳数据,则需釆取差分处理。差分有三种主要类型:前向差分、后向差分、中心差分。1、时间序列预测模型时间序列模型主要研究事物的自身发展规律,借以预测事物的未来趋势。主要方法有移动平均、指数平滑、分解预测、鲍克斯詹金斯模型、多变量模型以及类推法等。特点和应用范围时间序列一般指一组按时间顺序排列的数据,展示了研究对象在一定时期的发生变化过程。时间序列模型,就是根据预测对象时间变化特征,研究事物自身的发展规律,探讨未来发展趋势,是一种重要的定量预测方法,包括多种模型,主要适用于经济预测、商业预测、需求预测、库存预测等,预测期限主要为中、短期,不适用于有拐点的长期预测。2、微分方程预测模型当我们描述实际对象的某些特性随时间(或空间)而演变的过程、分析它的变化规律、预测它的未来性态、研究它的控制手段时,通常要建立对象的动态微分方程模型。微分方程大多是物理或几何方面的典型问题,假设条件已经给出,只需用数学符号将已知规律表示出来,即可列出方程,求解的结果就是问题的答案,答案是唯一的,但是有些问题是非物理领域的实际问题,要分析具体情况或进行类比才能给出假设条件。作出不同的假设,就得到不同的方程。比较典型的有:传染病的预测模型、经济增长预测模型、正规战与游击战的预测模型、药物在体内的分布与排除预测模型、人口的预测模型、烟雾的扩散与消失预测模型以及相应的同类型的预测模型。其基本规律随着时间的增长趋势是指数的形式,根据变量的个数建立初等微分模型:而后由于实际问题的改变,会出现外在的干预等,例如传染病模型,只有健康人才可能被传染为病人,病人治愈后仍有可能成为病人或者治愈后有免疫力,政府卫生部门的干预等,都会使得所建立的初等模型失败。为此根据情况可以适当地一步步改进所建立的初等模型,从而达到我们所需要的微分方程预测模型。改进包括:以及一些相应的根据情况而进行的改进模型。得到模型后可以用Matlab软件来求解画出散点图,并比较拟合度。3、神经网络预测模型BP神经网络模型是目前神经网络学习模型中最具代表性、应用最普遍的模型。BP神经网络架构是由数层互相连结的神经元组成,通常包含了输入层、输出层及若干隐藏层,各层包含了若干神经元。神经网络便于依照学习法则,透过训练以调整连结链加权值的方式来完成目标的收敛。所得的神经网络构架结构基本形式如图所示。BP神经网络的神经采用的传递函数一般都是S壮弯曲型可微函数,是严格的递增函数,在线性和非线性之间显现出较好的平衡,所以可实现输入和输出间的任意非线性映射,适用于中长期的预测;优点是逼近效果好,计算速度快,不需要建立数学模型,精度高;理论依据坚实,推导过程严谨,所得公式对称优美,具有强非线性拟合能力。缺点是无法表达和分析被预测系统的输入和输出间的关系,预测人员无法参与预测过程;收敛速度慢,难以处理海量数据,得到的网络容错能力差,算法不完备(易陷入局部极小)。4、灰色预测模型(1)灰色系统、白色系统和黑色系统•白色系统是指一个系统的内部特征是完全已知的,即系统的信息是完全充分的。•黑色系统是指一个系统的内部信息对外界来说是一无所知的,只能通过它与外界的联系来加以观测研究。灰色系统内的一部分信息是已知的,另一部分信息是未知的,系统内各因素间有不确定的关系。•灰色预测法是一种对含有不确定因素的系统进行预测的方法。•灰色预测是对既含有已知信息又含有不确定信息的系统进行预则,就是对在一定范围内变化的、与时间有关的灰色过程进行预测。(2)灰色预测法•灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。(3)灰色预测的四种常见类型•灰色时间序列预测即用观察到的反映预测对象特征的时间序列来构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。•畸变预测即通过灰色模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。•系统预测通过对系统行为特征指标建立一组相互关联的灰色预测模型,预测系统中众多变量间的相互协调关系的变化。•拓扑预测将原始数据做曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测该定值所发生的时点。二、灰色生成数列灰色系统理论认为,尽管客观表象复杂,但总是有整体功能的,因此必然蕴含某种内在规律。关键在于如何选择适当的方式去挖掘和利用它。灰色系统是通过对原始数据的整理来寻求其变化规律的,这是一种就数据寻求数据的现实规律的途径,即为灰色序列的生成。一切灰色序列都能通过某种生成弱化其随机性,显现其规律性。数据生成的常用方式有累加生成、累减生成和加权累加生成。(1)累加生成把数列各项(时刻)数据依次累加的过程称为累加生成过程(AGO)。由累加生成过程所得的数列称为累加生成数列。设原始数列为令称所得到的新数列为数列的1次累加生成数列。类似地有称为的r次累加生成数列。))(,),2(),1(()0()0()0()0(nxxxx,,,2,1,)()(1)0()1(nkixkxki))(,),2(),1(()1()1()1()1(nxxxx)0(x1,,,2,1,)()(1)1()(rnkixkxkirr)0(x(2)累减生成对于原始数据列依次做前后相邻的两个数据相减的运算过程称为累减生成过程IAGO。如果原始数据列为令称所得到的数列为的1次累减生成数列。注:从这里的记号也可以看到,从原始数列,得到新数列,再通过累减生成可以还原出原始数列。实际运用中在数列的基础上预测出,通过累减生成得到预测数列。))(,),2(),1(()1()1()1()1(nxxxx,,,3,2),1()()()1()1()0(nkkxkxkx)0(x)1(x)0(x)1(x)1(x)1(ˆx)0(ˆx(3)加权邻值生成设原始数列为称为数列的邻值。为后邻值,为前邻值,对于常数,令由此得到的数列称为数列在权下的邻值生成数,权也称为生成系数。特别地,当生成系数时,则称为均值生成数,也称等权邻值生成数。))(,),2(),1(()0()0()0()0(nxxxx)(),1()0()0(kxkx)0(x)1()0(kx)()0(kx]1,0[,,,3,2),1()1()()()0()0()0(nkkxkxkz)0(z)0(x5.0,,,3,2),1(5.0)(5.0)()0()0()0(nkkxkxkz累加生成计算示例例:x(0)=(x(0)(k)︱k=1,2,3,4,5)=x(0)(1),x(0)(2),x(0)(3),x(0)(4),x(0)(5)=(3.2,3.3,3.4,3.6,3.8)求x(1)(k)解:21)0()0()0()1()0()1(5.63.32.3)2()1()()2(,22.3)1()1(,1ixxixxkxxk51)0()1()0()1()0()1(41)0()1()0()1(31)0()1(3.178.35.13)5()4()()5(,55.136.39.9)4()3()()4(,49.94.35.6)3()2()()3(,3iiixxixxkxxixxkxxixxk累加生成的特点一般经济数列都是非负数列。累加生成能使任意非负数列、摆动的与非摆动的,转化为非减的、递增的。原始数列作图1—AGO作图某市的汽车销售量递增的规律原始数列作图1—AGO作图有明显的指

1 / 65
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功