山东大学网络教育学院课程名称:年级:层次:专业:姓名:学号:2012年月日1、复习资料答案由班委整理上传,仅供参考,2、请学生打印模拟试题考试后作为作业上交高等数学模拟题一一求下列极限11limsinnnn1sinn01limnn0sin1limnnn2求0limxxx1lim0xxx1lim0xxx0limxxx不存在3求10limxxe,lim10xxe0lim10xxe10limxxe不存在0sin4limsin5xxxxx原式=15sin1sin1lim0xxxxx二、a取什么值,0()0xexfxaxx连续解:,1limlim00xxxexf又xf连续,所以10af三计算下列各题1已知2sinlnyxx求,y解:xxxxy1sin2lncos22(),()xfxyfeey已知,求解:xfefefeeexfefeefeyxxxxfxfxxfxx3求dxxex2解:cedxedxxexxx22221212四、若202tan()secxyxxytdt,求dydx解:两边分别对x求导,得:yxyyxy22sec1sec12整理得:yxy2sin五、求yx,2yx和2yx所围平面图形的面积解:102202672dxxxdxxxS高等数学模拟题二一求下列极限11limcosnnn,1cosn01limnn0cos1limnnn2求22lim2xxx,122lim22lim22xxxxxx122lim2xxx22lim2xxx不存在3求10lim2xx,22lim1lim100xxxx022lim1lim100xxxx10lim2xx不存在02sin4lim3sinxxxxx求原式=43sin31sin21lim0xxxxx二、sin0()00xxfxxx二讨论在x=0处的连续性解:1sinlim0xxxfx1sinlim0xxxfxxf在0x处不连续,0点为可去间断点。三计算下列各题1,ln[ln(ln)]yxy求解:xxxy1ln1lnln12,,yxxyy求解:两边取对数:yxxylnln两边分别求导:yyxyxyxyln1ln整理得:xyxxyyxyylnln13xxdxee求解:原式=Ceededxeexxxxxarctan11222220100coslimsinxxxtdtx四求解:原式=101sin2sin251limsinsin10cos12limsin102cos2lim8420840940xxxxxxxxxxxxx五求225yx和4yx所围阴影平面图形的面积解:曲线225yx和4yx相交于点(3,-1),(7,3)积分面积如下:4xyx522xyxxxyx(7,3)(3,-1)0316132236252423312314252yyydyyydxdydxdySyy六22(1)24dyxxyxdx解:原式1412222xxyxxdxdy13441114232212221222xCxCdxxxCdxexxeydxxxdxxx高等数学模拟题三一求下列极限11limntgnn不存在2求limxaxaxa,1limlimaxaxaxaxaxax,1limlimaxxaaxaxaxaxlimxaxaxa不存在3求120limxxe,lim210xxe0lim210xxe120limxxe不存在40sin4limsinxmxnx原式=nmnxmxnxnxnxmxmxmxxx00limsinsinlim二已知20()0xxfxxx二已知,讨论f(x)在0x处的导数解:,10f,00fxf在0x处不可导。三计算下列各题13,tan(ln)yxy已知求解:xxxy1lnseclntan32222,()yfxy已知,求解:22xfxy3211cosdxxx3求解:原式=Cxxdx1sin11cos四232001()()2aaxfxdxxfxdx证明,(0)a,其中()fx在讨论的区间连续。证:令,2tx则,2dtxdxx:a0,则t:20a,左边=2200212aadxxxfdttft得证五计算反常积分2d;1xx解:221lim1lim111020202022vvuuxdxxdxxdxxdxxdx六求2(1)(arctan)ydxyxdy的通解解:21arctanyxydydx221arctan1yyyxdydx代入公式:CdyeyyeCdyeyyexyyydydyyarctan2arctan12111arctan1arctan22令,arctanty则ttttttCetCeteeCdttdex1yCeyarctan1arctan以下为历年模拟卷部分内容,供参考一求下列极限2求11lim1xxx解:111lim11lim11xxxxxx111lim11lim11xxxxxx111limxxe不存在3求111limxxe解:11lim1xx11lim1xx111limxxe不存在4求20cos1limxxx解:212sinlimcos1lim020xxxxxx560(sin)25lim[ln(1)]xxtgxx求原式=565021cossin2limxxxxx10求ctgxxxsin21lim02cos2sin2100sin21limsin21limexxxxxctgxx2求101lim()1xxxx原式=212lim122100121limeexxxxxxxx三、计算下列各题122ln()yxxay,已知求解:22222212211axaxxaxxy23(1)(2)3xxyx,求'y解:322323213263132333232131xxxxxxxxxxxxxxy3213lnxdxx求解:Cxxxdxdxx322ln31lnlnln14求dxexx23解:CxeCexexdxexedexdxexxxxxxxx121212212122223222222234sinxdx求解:原式=Cxxxdx3coscoscoscos13284()xfxdx求解:原式=Cxfxfxdxxfxfxxfxd124lnxdx求解:Cxxxxxdxxxdxlnlnlnln十、计算120d.1xx解:201arcsinarcsin110102xxdxdx五、求'tansin2yyxx的通解解:xCxCxxCdxxeeyxdxxdxcoscos32cos32cos12sin23tantan二222111lim12nnnnn二求解:n项n项nnnnnnnnnnnnn11112111111222222又nnn21lim=111limn故1111lim222nnnnnnn四证明2200(sin)(cos)fxdxfxdx证明:令xt2,则0,22,0txtx,dxdt且20200220cossincossindxxfdttfdttfdxxf得证