莲华中学初三级(2)两锐角之间的关系∠A+∠B=90°(3)边角之间的关系caAA斜边的对边sincbBB斜边的对边sincbAA斜边的邻边coscaBB斜边的邻边cosbaAAA的邻边的对边tanabBBB的邻边的对边tan(1)三边之间的关系222cbaABabcC在解直角三角形的过程中,一般要用到的一些关系:(4)Rt△ABC中有关定理:①中线;②30O.在Rt△ABC中,∠C=90°,根据下列条件解直角三角形;(1)a=30,b=20;(2)∠B=60°,c=14.ABCb=20a=30c解直角三角形的类型:1.已知两边型:2.已知一边一锐角型:(1)a和b;(2)a和c(或b和c)(1)一直角边和一锐角;(2)斜边和一锐角至少有2个元素,其中一个为边.注意:有斜边用弦,无斜边用切,宁乘勿除(取原避中)1、(2007旅顺)一个钢球沿坡角31°的斜坡向上滚动了5米,此时钢球距地面的高度是(单位:米)()A.5cos31°B.5sin31°C.5tan31°D.5cot31°考题再现B3105米2、(2008年温州)如图:在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3.则sinB=解:在Rt△ABC中∵CD是斜边AB上的中线,∴AB=2CD=4,sinB==ACAB34ABCD34直角三角形斜边上的中线等于斜边的一半铅直线水平线视线视线仰角俯角在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.例:热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120m,这栋高楼有多高?α=30°β=60°120ABCD仰角水平线俯角解:如图,a=30°,β=60°,AD=120.ADCDADBDatan,tan30tan120tanaADBD3403312060tan120tanADCD312031203120340CDBDBC1.2773160答:这栋楼高约为277.1mABCDαβ练习1.如图,两建筑物水平距离为24m,A点测得D点的俯角为30O,测得C点的俯角为60O,求这两座建筑物的高度.BAECD30O60O2、在山脚C处测得山顶A的仰角为45°.问题如下:(1)沿着水平地面向前300米到达D点,在D点测得山顶A的仰角为600,求山高AB.DABC45°60°xx3练习300米ABC2、在山脚C处测得山顶A的仰角为450。问题如下:变式:沿着坡角为30°的斜坡前进300米到达D点,在D点测得山顶A的仰角为600,求山高AB。30°DEFxx3.建筑物BC上有一旗杆AB,由距BC40m的D处观察旗杆顶部A的仰角50°,观察底部B的仰角为45°,求旗杆的高度(精确到0.1m)ABCD40m50°45°ABCD40m45°解:在等腰三角形BCD中∠ACD=90°BC=DC=40m在Rt△ACD中tanACADCDC所以AB=AC-BC=47.6-40=7.6答:棋杆的高度为7.6m.练习(课本P89)DCADCACtan6.474019.14050tan°BCD40m50°45°A4.如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=140°,BD=520m,∠D=50°,那么开挖点E离D多远正好能使A,C,E成一直线(精确到0.1m)50°140°ABCED∴∠BED=∠ABD-∠D=90°cosDEBDEBDcos505200.64520332.8答:开挖点E离点D332.8m正好能使A,C,E成一直线.解:要使A、C、E在同一直线上,则∠ABD是△BDE的一个外角BDEBDDEcos练习(课本P89)在Rt△BED中,例2、学校操场上有一根旗杆,上面有一根开旗用的绳子(绳子足够长),王同学拿了一把卷尺,并且向数学老师借了一把含300的三角板去度量旗杆的高度。(1)若王同学将旗杆上绳子拉成仰角为600,如图用卷尺量得BC=4米,则旗杆AB的高多少?(2)若王同学分别在点C、点D处将旗杆上绳子分别拉成仰角为600、300,如图量出CD=8米,你能求出旗杆AB的长吗?AB4m600ABD8300600CC1、如图,为了测量电线杆的高度AB,在离电线杆22.7米的C处,用高1.20米的测角仪CD测得电线杆顶端B的仰角a=22°,求电线杆AB的高.(精确到0.1米)图19.4.41.2022.7=220课后练习2.如图,从塔底在同一水平面的测量仪上,测得B点的仰角为45O,向灯塔前进10m,测得在塔顶的仰角为60O,测量仪高1.5m,求塔高.课后练习ABCDEx10m45O60O利用解直角三角形的知识解决实际问题的一般过程是:(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);(2)根据条件的特点,适当选用锐角三角形函数等去解直角三角形;(3)得到数学问题的答案;(4)得到实际问题的答案.名言:聪明在于学习,天才在于积累。……所谓天才,实际上是依靠学习。_____华罗庚例3:2003年10月15日“神舟”5号载人航天飞船发射成功.当飞船完成变轨后,就在离地球表面350km的圆形轨道上运行.如图,当飞船运行到地球表面上P点的正上方时,从飞船上最远能直接看到地球上的点在什么位置?这样的最远点与P点的距离是多少?(地球半径约为6400km,结果精确到0.1km)分析:从飞船上能最远直接看到的地球上的点,应是视线与地球相切时的切点.·OQFPα如图,⊙O表示地球,点F是飞船的位置,FQ是⊙O的切线,切点Q是从飞船观测地球时的最远点.的长就是地面上P、Q两点间的距离,为计算的长需先求出∠POQ(即a)PQPQPQ解:在图中,FQ是⊙O的切线,△FOQ是直角三角形.95.035064006400cosOFOQa18a∴PQ的长为6.200964014.3640018018当飞船在P点正上方时,从飞船观测地球时的最远点距离P点约2009.6km·OQFPα