高二数学导数及其应用2

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第三章导数及其应用复习小结本章知识结构导数导数概念导数运算导数应用函数的瞬时变化率运动的瞬时速度曲线的切线斜率基本初等函数求导导数的四则运算法则简单复合函数的导数函数单调性研究函数的极值、最值曲线的切线变速运动的速度最优化问题曲线的切线以曲线的切线为例,在一条曲线C:y=f(x)上取一点P(x0,y0),点Q(x0+△x,y0+△y)是曲线C上与点P临近的一点,做割线PQ,当点Q沿曲线C无限地趋近点P时,割线PQ便无限地趋近于某一极限位置PT,我们就把直线PT叫做曲线C的在点P处的切线。一.知识串讲此时割线PT斜率的极限就是曲线C在点P处的切线的斜率,用极限运算的表达式来写出,即k=tanα=000()()limxfxxfxx(一)导数的概念:1.导数的定义:对函数y=f(x),在点x=x0处给自变量x以增量△x,函数y相应有增量△y=f(x0+△x)-f(x0),若极限存在,则此极限称为f(x)在点x=x0处的导数,记为f’(x0),或y|;0000()()limlimxxfxxfxyxx0xx2.导函数:如果函数y=f(x)在区间(a,b)内每一点都可导,就说y=f(x)在区间(a,b)内可导.即对于开区间(a,b)内每一个确定的x0值,都相对应着一个确定的导数f’(x0),这样在开区间(a,b)内构成一个新函数,把这一新函数叫做f(x)在(a,b)内的导函数.简称导数.记作f’(x)或y’.即f’(x)=y’=0()()limxfxxfxx3.导数的几何意义:函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在P(x0,f(x0))处的切线的斜率,即曲线y=f(x)在点P(x0,f(x0))处的切线斜率为k=f’(x0).所以曲线y=f(x)在点P(x0,f(x0))处的切线方程为yy0=f’(x0)·(x-x0).4.导数的物理意义:物体作直线运动时,路程s关于时间t的函数为:s=s(t),那么瞬时速度v就是路程s对于时间t的导数,即v(t)=s’(t).基本初等函数的导数公式1.2.()3.4.5.ln6.7.8.nRa'n'n-1''x'xx'x'a'若f(x)=c,则f(x)=0若f(x)=x,则f(x)=nx若f(x)=sinx,则f(x)=cosx若f(x)=cosx,则f(x)=-sinx若f(x)=a,则f(x)=a若f(x)=e,则f(x)=e1若f(x)=logx,则f(x)=xlna1若f(x)=lnx,则f(x)=x返回导数的运算法则:法则1:两个函数的和(差)的导数,等于这两个函数的导数的和(差),即:()()()()fxgxfxgx法则2:两个函数的积的导数,等于第一个函数的导数乘第二个函数,加上第一个函数乘第二个函数的导数,即:()()()()()()fxgxfxgxfxgx法则3:两个函数的积的导数,等于第一个函数的导数乘第二个函数,减去第一个函数乘第二个函数的导数,再除以第二个函数的平方.即:2()()()()()(()0)()()fxfxgxfxgxgxgxgx返回当点Q沿着曲线无限接近点P即Δx→0时,割线PQ如果有一个极限位置PT.则我们把直线PT称为曲线在点P处的切线.设切线的倾斜角为α,那么当Δx→0时,割线PQ的斜率,称为曲线在点P处的切线的斜率.即:'00000()()()limlimxxfxxfxykfxxx切线PQoxyy=f(x)割线切线T返回1)如果恒有f′(x)0,那么y=f(x)在这个区间(a,b)内单调递增;2)如果恒有f′(x)0,那么y=f(x)在这个区间(a,b)内单调递减。一般地,函数y=f(x)在某个区间(a,b)内定理aby=f(x)xoyy=f(x)xoyabf'(x)0f'(x)0如果在某个区间内恒有,则为常数.0)(xf)(xf返回2)如果a是f’(x)=0的一个根,并且在a的左侧附近f’(x)0,在a右侧附近f’(x)0,那么是f(a)函数f(x)的一个极小值.函数的极值1)如果b是f’(x)=0的一个根,并且在b左侧附近f’(x)0,在b右侧附近f’(x)0,那么f(b)是函数f(x)的一个极大值注:导数等于零的点不一定是极值点.2)在闭区间[a,b]上的函数y=f(x)的图象是一条连续不断的曲线,则它必有最大值和最小值.函数的最大(小)值与导数xy0abx1x2x3x4f(a)f(x3)f(b)f(x1)f(x2)gg返回函数导数方程不等式中等问题复习选讲例5(05山东19)已知1x是函数32()3(1)1fxmxmxnx的一个极值点,其中,,0mnRm,(I)求m与n的关系表达式;(II)求()fx的单调区间;(III)当1,1x时,函数()yfx的图象上任意一点的切线斜率恒大于3m,求m的取值范围.函数导数方程不等式中等问题复习选讲解:(I)2()36(1)fxmxmxn因为1x是函数()fx的一个极值点,所以(1)0f,即36(1)0mmn,所以36nm.函数导数方程不等式中等问题复习选讲(II)由(I)知,2()36(1)36fxmxmxm=23(1)1mxxm当0m时,有211m,当x变化时,()fx与()fx的变化如下表:x2,1m21m21,1m11,()fx00()fx极小值极大值故由上表知,当0m时,()fx在2,1m单调递减,在21,1m单调递增,在(1,)上单调递减.(III)由已知得()3fxm,即22(1)20mxmx.又0m所以222(1)0xmxmm,即222(1)0,1,1xmxxmm①设212()2(1)gxxxmm,其函数开口向上,由题意知①式恒成立,所以22(1)0,120,(1)0.10.gmmg解之得43m又0m所以403m.即m的取值范围为4,03.(五)函数的最大值与最小值:1.定义:最值是一个整体性概念,是指函数在给定区间(或定义域)内所有函数值中最大的值或最小的值,最大数值叫最大值,最小的值叫最小值,通常最大值记为M,最小值记为m.2.存在性:在闭区间[a,b]上连续函数f(x)在[a,b]上必有最大值与最小值.3.求最大(小)值的方法:函数f(x)在闭区间[a,b]上最值求法:①求出f(x)在(a,b)内的极值;②将函数f(x)的极值与f(a),f(b)比较,其中较大的一个是最大值,较小的一个是最小值.【函数的极值和最值问题】例6(05北京15)已知函数3239fxxxxa.(Ⅰ)求fx的单调递减区间;(Ⅱ)若fx在区间2,2上的最大值为20,求它在该区间上的最小值.解:(Ⅰ)2369fxxx.令0fx,解得1x或3x,所以函数fx的单调递减区间为,1,3,.(Ⅱ)当2,2x时x22,111,22fx0fx2a极小22a因为22fa,222fa,所以22ff.例6(05北京15)已知函数3239fxxxxa.(Ⅰ)求fx的单调递减区间;(Ⅱ)若fx在区间2,2上的最大值为20,求它在该区间上的最小值.函数导数方程不等式中等问题复习选讲因为在1,3上0fx,所以fx在1,2上单调递增,又由于fx在2,1上单调递减,因此2f和1f分别是fx在区间2,2上的最大值和最小值,于是有2220a,解得2a.故32392fxxxx,因此113927f,即函数fx在区间2,2上的最小值为7.例7(06北京16)已知函数32()fxaxbxcx在点0x处取得极大值5,其导函数()yfx的图象经过点(1,0),(2,0),如图所示.求:(Ⅰ)0x的值;(Ⅱ),,abc的值.21Oyx解法一:(Ⅰ)由图象可知,在,1上0fx,在1,2上0fx,在2,上0fx,故fx在1x处取得极大值,所以01x.(Ⅱ)232fxaxbxc,由10,20,15fff,得320,1240,5.abcabcabc解得2,9,12abc.解法二:(Ⅰ)同解法一.(Ⅱ)设21232fxmxxmxmxm,又232fxaxbxc,所以3,,232mabmcm.323232mfxxxmx,由15f,即32532mm,得6m.所以2,9,12abc.两年北京导数题,感想如何?例1.已经曲线C:y=x3-x+2和点A(1,2)。求在点A处的切线方程?解:f/(x)=3x2-1,∴k=f/(1)=2∴所求的切线方程为:y-2=2(x-1),即y=2x变式1:求过点A的切线方程?例1.已经曲线C:y=x3-x+2和点(1,2)求在点A处的切线方程?解:变1:设切点为P(x0,x03-x0+2),∴切线方程为y-(x03-x0+2)=(3x02-1)(x-x0)21又∵切线过点A(1,2)∴2-(x03-x0+2)=(3x02-1)(1-x0)化简得(x0-1)2(2x0+1)=0,2114①当x0=1时,所求的切线方程为:y-2=2(x-1),即y=2x解得x0=1或x0=-k=f/(x0)=3x02-1,②当x0=-时,所求的切线方程为:y-2=-(x-1),即x+4y-9=0变式1:求过点A的切线方程?例1:已经曲线C:y=x3-x+2和点(1,2)求在点A处的切线方程?变式2:若曲线上一点Q处的切线恰好平行于直线y=11x-1,则P点坐标为____________,切线方程为_____________________.(2,8)或(-2,-4)y=11x-14或y=11x+18例2求曲线3232fxxxx过原点的切线方程.解:2362fxxx.设切线斜率为k,(1)当切点是原点时,02kf,所以所求曲线的切线方程为2yx.(2)当切点不是原点时,设切点是00,xy,则有32000032yxxx,即2000032ykxxx,又2000362kfxxx,故得00031,24yxkx,所求曲线的切线方程为14yx.函数导数方程不等式中等问题复习选讲小评:“过某点”与“在某点处”的不同.故审题应细.又如:曲线231yx在点1,0处的切线问题.1x处的导数不存在,说明该曲线在点1,0处的切线的斜率趋于无穷大,倾斜角为2,所以曲线231yx在点1,0处的切线方程为1x.(1)正确理解导数的概念和意义,导数是一个函数的改变量与自变量的改变量的比值的极限,它反映的是函数的变化率,即函数值在x=x0点附近的变化快慢;所以只有与变化率有关的问题都可以用导数来解决;(2)掌握求导数的方法,特别是在求复合函数的导数时,一定要把握层次,把每一层的复合关系都看清楚;(3)利用导数来研究函数。主要是研究函数的增减性、函数的极大(小)值、函数的最大(小)值以及一些与实际相关的问题。三.小结:看书神站看书神站yth94zwb裘罩在袍子外,再戴雨帽,将头发好生遮在雨帽里,复上下相了相、理了理,外间小丫头已把漓桃的雨具也取来了,乃是莲花帽、

1 / 30
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功