1.【2012高考江苏6】(5分)现有10个数,它们能构成一个以1为首项,3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是▲.2、江苏5.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率为______3、安徽文(9)从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于(A)(B)(C)(D)4.(2012年高考(天津文))某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(I)求应从小学、中学、大学中分别抽取的学校数目.(II)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,(1)列出所有可能的抽取结果;(2)求抽取的2所学校均为小学的概率.5.(2012年高考(山东文))袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.6、北京文16.(本小题共13分)以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.7、江西文16.(本小题满分12分)某饮料公司对一名员工进行测试以便确定考评级别,公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中的3杯为A饮料,另外的2杯为B饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A饮料。若该员工3杯都选对,测评为优秀;若3杯选对2杯测评为良好;否测评为合格。假设此人对A和B两种饮料没有鉴别能力(1)求此人被评为优秀的概率(2)求此人被评为良好及以上的概率8、福建文19.(本小题满分12分)某日用品按行业质量标准分成五个等级,等级系数X依次为1.2.3.4.5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:X12345fa0.20.45bC(I)若所抽取的20件日用品中,等级系数为4的恰有4件,等级系数为5的恰有2件,求a、b、c的值;(11)在(1)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从x1,x2,x3,y1,y2,这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率。答案1、【答案】35。【考点】等比数列,概率。【解析】∵以1为首项,3为公比的等比数列的10个数为1,-3,9,-27,···其中有5个负数,1个正数1计6个数小于8,∴从这10个数中随机抽取一个数,它小于8的概率是63=105。2、答案:313、D4.解:(1)从小学、中学、大学中分别抽取的学校数目为3,2,1(2)①在抽取到的6年学校中,3所小学分别记为123,,AAA,2所中学分别记为45,AA,大学记为6A,则抽取2所学校的所有可能结果为1213141516,,,,,,,,,AAAAAAAAAA,232425263435,,,,,,,,,,,AAAAAAAAAAAA,36454656,,,,,,,AAAAAAAA,共15种.②从6年学校中抽取的2所学校均为小学(记为事件B)的所有可能结果为121323,,,,,AAAAAA,共3种,所以31()155PB.5.解:(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为310P.(II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为815P.6、解(Ⅱ)记甲组四名同学为A1,A2,A3,A4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B1,B2,B3,B4,他们植树的棵数依次为9,8,9,10,分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是:(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),(A3,B1),(A2,B2),(A3,B3),(A1,B4),(A4,B1),(A4,B2),(A4,B3),(A4,B4),用C表示:“选出的两名同学的植树总棵数为19”这一事件,则C中的结果有4个,它们是:(A1,B4),(A2,B4),(A3,B2),(A4,B2),故所求概率为.41164)(CP7、.(本小题满分12分)解:将5不饮料编号为:1,2,3,4,5,编号1,2,3表示A饮料,编号4,5表示B饮料,则从5杯饮料中选出3杯的所有可能情况为:(123),(124),(1,2,5),(134),(135),(145),(234),(235),(245),(345)可见共有10种令D表示此人被评为优秀的事件,E表示此人被评人良好的事件,F表示此人被评为良好及以上的事件。则(1)1P(D)10(2)37P(E),P(F)P(D)P(E)5108、.本小题主要考查概率、统计等基础知识,考查数据处理能力、运算求解能力、应用意识,考查函数与方程思想、分类与整合思想、必然与或然思想,满分12分。解:(I)由频率分布表得0.20.451,abc即a+b+c=0.35,因为抽取的20件日用品中,等级系数为4的恰有3件,所以30.15,20b等级系数为5的恰有2件,所以20.120c,从而0.350.1abc所以0.1,0.15,0.1.abc(II)从日用品1212,,,xxyy中任取两件,所有可能的结果为:12131112232122313212{,},{,},{,},{,},{,},{,},{,},{,},{,},{,}xxxxxyxyxxxyxyxyxyyy,设事件A表示“从日用品12312,,,,xxxyy中任取两件,其等级系数相等”,则A包含的基本事件为:12132312{,},{,},{,},{,}xxxxxxyy共4个,又基本事件的总数为10,故所求的概率4()0.4.10PA