数学建模传染病模型

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

数学建模1传染病的传播摘要:本文先根据材料提供的数据建立了指数模型,并且全面地评价了该模型的合理性与实用性。而后对模型与数据做了较为扼要地分析了指数模型的不妥之处。并在对问题进行较为全面评价的基础上引入更为全面合理的假设和建立系统分析模型。运用联立微分方程组体现疫情发展过程中各类人的内在因果联系,并在此基础上建立方程求解算法结合刘明:传染病的传播问题2MATLAB编程(程序在附件二)拟合出与实际较为符合的曲线并进行了疫情预测。同时运用双线性函数模型对卫生部的措施进行了评价并给出建议以及指出建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难本文的最后,通过本次建模过程中的切身体会,说明建立如SARS预测模型之类的传染病预测模型的重要意义。关键词:微分方程SARS数学模型感染率1问题的重述SARS(SevereAcuteRespiratorySyndrome,严重急性呼吸道综合症,俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。请你们对SARS的传播建立数学模型,具体要求如下:1)建立传染病传播的指数模型,评价其合理性和实用性。2)建立你们自己的模型,说明为什么优于指数模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。附件1提供的数据供参考。3)说明建立传染病数学模型的重要性。2定义与符号说明N…………………………………表示为SARS病人的总数;K(感染率)……………………表示为平均每天每人的传染他人的人数;L…………………………………表示为每个病人可能传染他人的天数;dtdN(t)…………………………表示为每天(单位时间)发病人数;N(t)-N(t-L)………………………表示可传染他人的病人的总数减去失去传染能力的病人数;t…………………………………表示时间;R2………………………………表示拟合的均方差;3建立传染病传播的指数模型3.1模型假设1)该疫情有很强的传播性,病人(带菌者)通过接触(空气,食物,……)将病菌传播给健康者。单位时间(一天)内一个病人能传播的人数是常数k;2)在所传染的人当中不考虑已治愈的人是否被再次被传播,治愈的人数占该地区的总人数是绝对的少数,治愈者不会再被传播并不影响疫情在该时间内的感染率常数k;3)病者在潜伏期传播可能性很小,仍按健康人处理;4)SARS对不同的年龄组的感染率略有不同(相差不大),但我们只考虑它健康人的感染率是一样的;数学建模35)我们所采取的隔离是非常严格的,被隔离的病人不会再感染其他人;3.2模型的分析和建立求解全国疫情从出现第一例病人起,到4月20日前后(从起点起45天左右)是疫情高峰,在此之前k值我们取k=0.16204,在此后的时间里我们取k=0.0273来计算。根据提供的数据可以建立指数模型:N(t)=n0(1+K)t。在前45天我们取k=0.16204来代入,分别算出45天的病人累计数,根据45天中天病人的数量来画出图1,并与附件中所提供的数据中的日累计数来进行了比较。如图3-1所示:图3-1根据指数模型建立的图形刘明:传染病的传播问题4图3-2根据附件1所建立的图形从两个图形中,我们可以看出,从4月20日开始计算,前45天的病人累计数和我们用k的值来代入模型画出的病人计算数基本上是吻合的。图形1中的横坐标数字表示时间的天数,如15即4月20日之后的第15天,40即4月20日之后的第40天。在45天之后的时间里,模型对k的值进行了调整,k=0.0273,我们再将k=0.0273代入模型N(t)=n0(1+K)t,在45天之后的时间里,我们取了30天的时间,分别算出每天的病人累计数,如图3-3所示:全国人数变化05001000150020002500300035001357911131517192123252729天数人数(全国)累计人数天数图3-3数学建模53.3对指数模型的验证和评价在图形3-3中的横坐标的数值表示图形1中所表示的天数之后的天数,如1即表示4月15日之后的45天之后的有第六天,也就是4月15日之后的第51天,即表示4月15日之后的第67天。首先在图形3-3结合图形3-1可以看出,图形3-1中的第45天与图形2中的第一天(相隔一天)的人数统计是相差比较大的,存在这种情况的原因是在我们在计算第61天,数据值发生了改变,从0.16204到0.0273是一个很大的变化,而在实际的生活中的情况是k值每天都在进行数值在减小的改变,但改变的没有这么大,也正是因为k有了跳跃,N(t)的值才会发生这么大的变化,这是可以理解的。我们对图形2的整个曲线来与附件1中的图形1进行比较,可以发现,在整个阶段的数值曲线图形都是很接近的。我们在对全国在前期和后期k分别取k=0.16204和k=0.0273的值来代入所给的模型来计算并画出的图形,与实际的数据和图形进行了比较,是有着很好的吻合,同样我们也可以对k取值一个定值来对全国进行计算和画图,同样也是合理的。因此我们就认为题目中给我们的那个模型N(t)=n0(1+K)t是合理的。通过这个模型我们可以根据某一地区的疫情从爆发到高潮或某一阶段的时间的长短来拟合得到一个与该地区这种疫情的感染率,就可以用该模型来计算或预测该地区现在及以后的病人的累计数,这也就是该模型的实用性所在。4建立新模型4.1模型假设模型假设与指数模型假设一致不在赘述。4.2模型分析与建立4.2.1模型分析初期由于疫情初期政府控制力度不够,大众的对SARS的防范意识不强,造成病情迅速蔓延。而当政府采取有力措施,人们的防患意识增强,疫情则趋于缓和,病患者人数迅速下降。所以SARS传播大体上可分为两个阶段:1)控制前期:即认为病毒传播方式是自然传播。2)控制后期:政府强力介入之后的病毒传播模型。4.2.2模型建立根据对指数模型的分析和4.2的分析疫情走势的微分方程如下;dtdN(t)=K[N(t)–N(t–L)].(1)4.3模型的求解如果假定有一个初始爆发时间,最初有N0个病人突然出现,在L天之内(tL)则N(t-L)=0。在这个初发期间内,方程(1)给出的发病人数呈指数增长刘明:传染病的传播问题6N(t)=N0(1+K)t(0t≤L)(2)当Lt≤2L的时候,N(t-L)这部分人就已经没有传播能力了,因此我们推算出了下列模型N(t)=N0[(1+K)t–(t-L)K(1+K))1(Lt](Lt≤2L)(3)当2Lt≤3L的时候又有下列模型N(t)=N0(1+K)t–N(t-L)(2Lt≤3L)(4)L可理解为平均每个病人在被发现前后可以造成直接传染的期限,在此期限后他失去传染作用,可能的原因是被严格隔离、病愈不再传染或死去等。在不同的时期L的取值范围也是不一样的,我们所得到的资料中总结出不论对于疫情的爆发阶段,还是疫情的控制阶段,这个参数都不能用得太小,否则无法描写好各阶段的数据。该参数放在15-25之间比较好,现在医学界还没有确定出L的值,我们想象可能有的人抵抗能力强,有的人抵抗能力差,因此我们把它固定在20(天)上这个值有一定统计上的意义.我们把L的值定在了20天,是合理的,当t的取值比较大时,该模型又有指数关系,N(t)前后之间的差距比较大,然而当t60时,在这之前失去传播能力的只占了少部分,因此规定当t60时也可用N(t)=N0(1+K)t–N(t-L)的模型。K的值其实是一个变量,它每天的值都在发生变化。疫情刚开始的时候,K的值大,原因可能有刚可能是政府部门还没有足够重视起来,人们也还没有重视,医疗部门也还没有比较好的设备,医生们对病情也还没有很了解,技术上可能也还有不足。但随着病情的日益加重,来自各个方面的重视程度都有很大的提高,这是K的值就比较小了。在此模型中,我们认为感染率(K)在数值上与病例的增长率是相等的,疫情患者他传播在传播给健康人的时候,健康人他可能是带病毒了,但健康热处于潜伏期状态,据“全国“非典”科技攻关组公布七大科研进展”与于2003-06-03日报道中指出潜伏期患者传染的可能很小。有关部门对非典暴发过程中两例传播链进行了细致的调查和分析,这两个案例中共追查到潜伏期密切接触者158人,无一人死亡。因此我们在模型中说的感染率只为疫情患者传染给他人,而且他人发病,若他人不发病则不为感染率。增长率在数值上即为感染率。我们对全国所提供的所有数据中的已确诊病例累计进行了分析计算,得出感染率K的变化数据并画出了曲线图。如图4-1所示:数学建模7传播率的变化K=7E-13t6-4E-10t5+8E-08t4-1E-05t3+0.0006t2-0.0191t+0.2325R2=0.6988-0.100.10.20.30.40.5050100150200日期传播率多项式图4-1K(感染率)是一条跟t的值有关的曲线,我们通过回归法K的公式为:K=7E-13t6-4E-10t5+8E-08t4-1E-05t3+0.0006t2-0.0191t+0.2325(5)图4-1中R2=0.6988为曲线回归的均方差,可见存在的误差并不大。t为疫情流行的天数。4.4模型检验通过该公式可预测疫情开始时或以后的累计病人总数。例如要预测某一天病人的累计总数,将时间t的天数代入方程(5)即可求得K(感染率)的大小,因为L的值定在20天,所以当0t≤20时,将K代入(2);当20t≤40时,将K代入(3);当40t≤60时,将K代入(4)。当t=10时,我们根据方程(5),可求得K=0.0923,我们再将K=0.0923代入(2)得到N=8。当t=50时,我们根据方程(5),可求得K=0.0614,我们再将K=0.0614代入(2)得到N=308。这与实际给出的数据非常接近。可以说明我们的模型是一个比较能够预测以及能为预防和控制提供信息的模型。4.5模型的应用与推广此模型可以作为预测以及能为预防和控制提供可靠、足够的信息的模型。4.6与指数模型的比较1)我们对不同阶段的疫情的计算和预测建立了不同的模型,这样来分析比附件1所提供的早期模型更加的精确。2)对感染率K求出了方程,可以知道每一天的疫情感染率,可以更加有效的计算与预测有关数据。3)该模型实用性更强,能更加准确的反映实情。5建立模型的关键和困难刘明:传染病的传播问题8建立模型的关键在于对模型进行动态的分析,当传染病发展到一定阶段在政府的控传染率下降。此时还用之前的误差会很大。在建立模型过程中有以下几个方面的困难:1)对不同地区SARS的卫生知识的宣传的多少的不同,K的值就不一样;2)对某一地区的不同地方的强化管理也不一样(如公交、商场、餐厅、娱乐场所等),K的值也就不一样;3)还有保护工具的使用、建筑物的通风条件、居住的卫生条件等等的不同,都会有有不同的K的取值。6对于卫生部门采取的措施的评价对于卫生部门提前或延后5天采取严格的隔离措施的影响,我们可以建立下面的模型进行辅助分析估计:1)模型参数定义:S(t)——t时刻易感人群总数I(t)——t时刻出现的新增患者)(——患者从患病起经过时间,仍为患者的概率)(——患者距发病时间,具有传染性的概率——患者与易感人群接触率近断时间的医学研究表明,从正式发病到治愈一般需7—14天或更长时间,假定平均治愈时间为12天。2)基本条件假设:新患者出现的数量与现有患者的数量成正比,也与现有易感者的数量成正比,即发病率是患者人数和易感者人数的双线性函数。由基本假设条件可得:S(t+1)=S(t)-I(t+1)(1)I(t+1)=S(t)ttI0)()((2)经整理后得:S(t+1)=S(t)-ttItS0)()()((3)S(t+1)

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功