.WORD格式整理....专业知识分享..第二章统计章末综合检测1一、选择题1.某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A.抽签法B.随机数法C.系统抽样法D.分层抽样法2.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有()A.abcB.bcaC.cabD.cba3.2014年某大学自主招生面试环节中,七位评委为一考生打出分数的茎叶图如图21,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别为()图21A.84,4.84B.84,1.6C.85,1.6D.85,44.甲、乙、丙、丁四人参加射击项目选拔赛,四人平均成绩和方差如下:甲乙丙丁平均环数x8.68.98.98.2方差s23.53.52.15.6若从四人中选一人,则最佳人选是()A.甲B.乙C.丙D.丁5.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n人中,抽取35人进行问卷调查,已知高二被抽取的人数为13人,则n=()A.660B.720C.780D.8006.下表是某小卖部一周卖出热茶的杯数与当天气温的对比表:气温/℃1813104-1杯数/杯2434395163若热茶杯数y与气温x近似地满足线性关系,则其关系式最接近的是()A.y=x+6B.y=x+42C.y=-2x+60D.y=-3x+787.x是x1,x2,…,x100的平均数,a是x1,x2,…,x40的平均数,b是x41,x42,…,x100的平均数,则下列各式正确的是()A.x=40a+60b100B.x=60a+40b100C.x=a+bD.x=a+b28.在抽查某产品的尺寸过程中,将其尺寸数据分成若干组,[a,b]是其中一组,抽查出的个体数在该组上的频率是m,该组上的直方图的高为h,则|a-b|=().WORD格式整理....专业知识分享..A.h·mB.hmC.mhD.与m,h无关9.图25是某县参加2014年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1,A2,…,Am(如A2表示身高(单位:cm)在[150,155)内的学生人数).图26是统计图中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是()图25图26A.i9?B.i8?C.i7?D.i6?10.图228是根据某班学生在一次数学考试中的成绩画出的频率分布直方图,若80分以上为优秀,根据图形信息可知:这次考试的优秀率为()图228A.25%B.30%C.35%D.40%11.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据得出样本频率分布直方图(如图229).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中用分层抽样方法抽出100人做进一步调查,则在[2500,3000)(单位:元)月收入段中应抽出________人.图229.WORD格式整理....专业知识分享..二、填空题12.下列四种说法中,①数据4,6,6,7,9,3的众数与中位数相等;②一组数据的标准差是这组数据的方差的平方;③数据3,5,7,9的标准差是数据6,10,14,18的标准差的一半;④频率分布直方图中各小长方形的面积等于相应各组的频数.其中正确的有__________(填序号).13.将参加数学竞赛的1000名学生编号如下:0001,0002,003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法把编号分成50个部分,如果第一部分编号为0001,0002,0003,…,0020,第一部分随机抽取一个号码为0015,那么抽取的第40个号码为________.14.超速行驶已成为马路上最大杀手之一,已知某中段属于限速路段,规定通过该路段的汽车时速不超过80km/h,否则视为违规.某天,有1000辆汽车经过了该路段,经过雷达测速得到这些汽车运行时速的频率分布直方图如图27,则违规的汽车大约为________辆.图2715.已知回归直线斜率估计值为1.23,样本点中心为(4,5),则回归方程是____________.三、解答题16.某校文学社开展“红五月”征文活动,作品上交时间为5月2号~5月22号,评委从收到的作品中抽出200,经统计,其频率分布直方图如图2216.(1)样本中的作品落在[6,10)内的频数是多少?(2)估计众数、中位数和平均数各是多少?17.对甲、乙两名自行车赛手在相同条件下进行了8次测试,测得他们的最大速度(单位:m/s)的数据如下表:甲2738303735312450乙3329383428364345(1)画出茎叶图。(2)分别求出甲、乙两名自行车赛手最大速度(单位:m/s)的数据的平均数、中位数、标准差,并判断选谁参加比赛更合适(可用计算器)..WORD格式整理....专业知识分享..18.有一个容量为100的样本,数据的分组及各组的频数如下:[12.5,15.5),6;[15.5,18.5),16;[18.5,21.5),18;[21.5,24.5),22;[24.5,27.5),20;[27.5,30.5),10;[30.5,33.5],8.(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)数据落在[18.5,27.5)范围内的可能性为百分之几?19.为了调查甲、乙两个交通站的车流量,随机选取了14天,统计每天上午8:00~12:00间各自的车流量(单位:百辆),得如图28所示的统计图,根据统计图:(1)甲、乙两个交通站的车流量的极差分别是多少?(2)甲交通站的车流量在[10,40]间的频率是多少?(3)甲、乙两个交通站哪个更繁忙?并说明理由.图2820.某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表:商店名称ABCDE销售额x/千万元35679利润额y/百万元23345(1)画出销售额和利润额的散点图;(2)若销售额和利润额具有相关关系,用最小二乘法计算利润额y对销售额x的回归直线方程;(3)据(2)的结果估计当销售额为1亿元时的利润额..WORD格式整理....专业知识分享..第二章自主检测1一.1.D2.D3.C4.C5.B6.C7.A8.C9.B10.B11.25二.12.①③13.079514.28015.y^=1.23x+0.08三.16.解:(1)作品落在[6,10)内的频率为1-0.08-0.36-0.12-0.12=0.32,∴频数为200×0.32=64.(2)众数估计值为:10+142=12,中位数的估计值为:从左到右小矩形面积依次为0.08,0.32,0.36,0.12,0.12,由于中位数左、右两边的小矩形面积相等,若设为x,则(x-10)×0.09=0.1,∴x≈11.平均数的估计值为0.08×4+0.32×8+0.36×12+0.12×16+0.12×20≈12.17.解:(1)茎叶图如图D31,中间数为数据的十位数.图D31从这个茎叶图上可以看出,甲、乙的得分情况都是分布均匀的,只是乙更好一些;乙的中位数是35,甲的中位数是33.因此乙发挥比较稳定,总体得分情况比甲好.(2)利用科学计算器,得x甲=34,x乙=35.75;s甲≈7.55,s乙≈5.70;甲的中位数是33,乙的中位数是35.综合比较,选乙参加比赛更合适.18.解:(1)样本的频率分布表如下:分组频数频率[12.5,15.5)60.06[15.5,18.5)160.16[18.5,21.5)180.18[21.5,24.5)220.22[24.5,27.5)200.20[27.5,30.5)100.10[30.5,33.5]80.08合计1001.00(2)频率分布直方图如图D32.图D32.WORD格式整理....专业知识分享..(3)0.18+0.22+0.20=0.60=60%.19.解:(1)甲交通站的车流量的极差为73-8=65;乙交通站的车流量的极差为71-5=66.(2)甲交通站的车流量在[10,40]间的频率为414=27.(3)甲交通站的车流量集中在茎叶图的下方,而乙交通站的车流量集中在茎叶图的上方.从数据的分布情况来看,甲交通站更繁忙.20.解:(1)销售额和利润额的散点图如图D33.图D33(2)销售额和利润额具有相关关系,列表如下:xi35679yi23345xiyi615182845x=6,y=3.4,51iiixy=112,521iix=200所以b^=112-5×6×3.4200-5×62=0.5,a^=y-b^x=3.4-6×0.5=0.4.从而得回归直线方程y^=0.5x+0.4.(3)当x=10时,y^=0.5×10+0.4=5.4(百万元).故当销售额为1亿元时,利润额估计为540万元..WORD格式整理....专业知识分享..