4.2.2圆与圆的位置关系复习回顾:圆与圆的位置关系有哪些?直线与圆的位置关系:相离、相交、相切判断直线与圆的位置关系有哪些方法?(1)根据圆心到直线的距离;(2)根据直线的方程和圆的方程组成方程组的实数解的个数;如果把两个圆的圆心放在数轴上,那么两个圆的位置关系有哪些?rO2rO2rO2rO2rO2rO2rO2RO1x(1)利用连心线长与r1,r2的大小关系判断:圆C1:(x-a)2+(y-b)2=r12(r10)圆C2:(x-c)2+(y-d)2=r22(r20)①|C1C2||r1+r2|圆C1与圆C2相离圆C1与圆C2外切②|C1C2|=|r1+r2|圆C1与圆C2相交③|r1-r2||C1C2||r1+r2|圆C1与圆C2内切④|C1C2|=|r1-r2|圆C1与圆C2内含⑤|C1C2||r1-r2|(2)利用两个圆的方程组成方程组的实数解的个数:nrdycxrbyax的解的个数为设方程组)()()()(22222122n=0两个圆相离或内含△0n=1两个圆外切或内切△=0n=2两个圆相交△0解法一:22222221)10()2()2(:5)4()1(:yxCyxC把圆C1和圆C2的方程化为标准方程:例1、已知圆C1:x2+y2+2x+8y-8=0和圆C2:x2+y2-4x-4y-2=0,试判断圆C1与圆C2的位置关系.10),2,2(5),4,1(2211rCrC半径为的圆心半径为的圆心22121212(12)(42)35||510||510CCrrrr||53||105531052121rrrr即而所以圆C1与圆C2相交,它们有两个公共点A,B.例1、已知圆C1:x2+y2+2x+8y-8=0和圆C2:x2+y2-4x-4y-2=0,试判断圆C1与圆C2的位置关系.解法二:圆C1与圆C2的方程联立,得(2)0244(1)08822222yxyxyxyx(1)-(2),得整理得代入得由),1(21)3(xy(4)0322xx016)3(14)2(2则所以,方程(4)有两个不相等的实数根x1,x2因此圆C1与圆C2有两个不同的公共点所以圆C1与圆C2相交,它们有两个公共点A,B.(3)012yx+-练习:判断下列两圆的位置关系:(1)16)5(21)2()2(2222yxyx)与((2)02760762222yyxxyx与所以两圆外切。21rrd解(2):将两圆的方程化成标准方程,得36)3(22yx16322yx23)03()30(22d两圆的半径分别为1246rr和所以两圆相交.5)25()2(222d解(1):两圆的圆心坐标为(-2,2),(2,5),两圆的圆心距4121rr和两圆的半径分别为两圆的圆心坐标为(-3,0),(0,-3),两圆的圆心距1042121rrdrr因为2小结:判断两圆位置关系几何方法两圆心坐标及半径(配方法)圆心距d(两点间距离公式)比较d和r1,r2的大小,下结论代数方法222111222222()()()()xaybrxaybr消去y(或x)02rqxpx0:0:0:相交内切或外切相离或内含总结判断两圆位置关系几何方法代数方法各有何优劣,如何选用?(1)当Δ=0时,有一个交点,两圆位置关系如何?内切或外切(2)当Δ0时,没有交点,两圆位置关系如何?几何方法直观,但不能求出交点;代数方法能求出交点,但Δ=0,Δ0时,不能判圆的位置关系。内含或相离变式例题:已知圆C1:x2+y2+2x+8y-8=0圆C2:x2+y2-4x-4y-2=0,试判断圆C1与圆C2的位置关系.若相交,求两圆公共弦所在的直线方程及弦长.练习:求x2+y2-10x-15=0与x2+y2-15x+5y-30=0的公共弦所在的直线方程。分析:只须把两个方程相减,消去2次项①②①-得:5x-5y+15=030.xy为所求的方程②xYo例2:求过点A(0,6)且与圆C:相切于原点的圆方程。0101022yxyx将圆C化为标准方程,得50)5()5(22yx则圆心为C(-5,-5),半径为,25所以经过已知圆的圆心和切点的直线方程为。0yx由题意知,O(0,0),A(0,6)在所求圆上,且圆心在直线0yx则有0)6()0()0()0(222222barbarba解:设所求圆的方程为222)()(rbxax.23.3.3rba解得所以所求圆的方程为:。18)3()3(22yxCMA(0,6)练习.求半径为,且与圆切于原点的圆的方程。322210100xyxyxyOCBA22(3)(3)18xy22(3)(3)18xy或练习:2、已知以C(-4,3)为圆心的圆与圆相切,求圆C的方程。122yx解得:外切.16)3()4(22yx内切.36)3()4(22yx3、求与圆O:相外切,切点为P(-1,)且半径为4的圆的方程。224xy3解得:22(3)(33)16.xy练习:例3.求以圆C1∶x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦为直径的圆方程.解:相减得公共弦所在直线方程为4x+3y-2=0.∵所求圆以AB为直径,于是圆的方程为(x-2)2+(y+2)2=25.