广义相对论之三Levi-Civita张量密度与推广的Kronecker符号张宏浩2定义我们下面来说明3的证明之1在4维流形中,任何逆变的4阶全反对称张量应正比于根据定义,45的证明之2由张量的坐标变换关系代入得6的证明之3特别地,有7的证明之489容易证明1011证明:可构造弯曲时空的Levi-Civitacovarianttensor为121314同理,15根据定义,如下关系式显然成立16对张量的反对称化可表达为1718192021因此22小结:23更一般地,对于d维流形,有证明留给读者去完成