人工智能摘要:谷歌AlphaGo战胜世界围棋冠军李世石的事件,引起了全球人类对于人工智能的兴趣。一时间,人们茶余饭后的谈资都围绕着人工智能这一领域展开。对于人工智能来说,前60年的人工智能历程,可以用“无穷动”来形容;后60年的人工智能发展,可以用“无穷大”来期许。本文就从它的概念、简史、成果、前景、争论来分析这一领域。关键字:人工智能、机器人、深度学习、专家系统一、什么是人工智能?(一)、字面理解人工智能即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(CONSCIOUSNESS)、自我(SELF)、思维(MIND)(包括无意识的思维(UNCONSCIOUS_MIND))等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及对人的智能本身的研究。其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。(二)、科学定义著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义:“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而另一个美国麻省理工学院的温斯顿教授认为:“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”这些说法反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。(三)、分类1、弱人工智能ArtificialNarrowIntelligence(ANI)弱人工智能是擅长于单个方面的人工智能。比如有能战胜象棋世界冠军的人工智能,但是它只会下象棋,你要问它怎样更好地在硬盘上储存数据,它就不知道怎么回答你了。2、强人工智能ArtificialGeneralIntelligence(AGI)人类级别的人工智能。强人工智能是指在各方面都能和人类比肩的人工智能,人类能干的脑力活它都能干。创造强人工智能比创造弱人工智能难得多,我们现在还做不到。LindaGottfredson教授把智能定义为“一种宽泛的心理能力,能够进行思考、计划、解决问题、抽象思维、理解复杂理念、快速学习和从经验中学习等操作。”强人工智能在进行这些操作时应该和人类一样得心应手。3、超人工智能ArtificialSuperintelligence(ASI)d牛津哲学家,知名人工智能思想家NickBostrom把超级智能定义为“在几乎所有领域都比最聪明的人类大脑都聪明很多,包括科学创新、通识和社交技能。”超人工智能可以是各方面都比人类强一点,也可以是各方面都比人类强万亿倍的。超人工智能也正是为什么人工智能这个话题这么火热的缘故,同样也是为什么永生和灭绝这两个词会在本文中多次出现。二、发展简史第一阶段:人工智能的起步期人工智能的传说可以追溯到古埃及,但随着1941年以来电子计算机的发展,技术已最终可以创造出机器智能,“人工智能”(ARTIFICIALINTELLIGENCE)一词最初是在1956年DARTMOUTH学会上提出的,从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展,在它还不长的历史中,人工智能的发展比预想的要慢,但一直在前进,从60年前出现至今,已经出现了许多AI程序,并且它们也影响到了其它技术的发展。1955年,纽厄尔和司马贺(卡内基梅隆大学计算机系创立者)编制了一个名为逻辑专家的程序,这个程序被认为是人工智能应用的开端,是第一个AI程序。1956年夏季,以麦卡赛、明斯基、罗切斯特和申农等为首的一批有远见卓识的年轻科学家在一起聚会,共同研究和探讨用机器模拟智能的一系列有关问题,并首次提出了“人工智能”这一术语,它标志着“人工智能”这门新兴学科的正式诞生。在1956年的这次会议之后,人工智能迎来了属于它的第一段HappyTime。3、1957年康奈尔大学的实验心理学家弗兰克·罗森布拉特在一台IBM-704计算机上模拟实现了一种他发明的叫作“感知机”(Perceptron)的神经网络模型。这个模型可以完成一些简单的视觉处理任务。这引起了轰动。在这段长达十余年的时间里,计算机被广泛应用于数学和自然语言领域,用来解决代数、几何和英语问题。这让很多研究学者看到了机器向人工智能发展的信心。甚至在当时,有很多学者认为:“二十年内,机器将能完成人能做到的一切。”大批科学家开始研究人工智能,在初期受到显著成果和乐观精神驱使的很多美国大学,如:麻省理工大学、卡内基梅隆大学、斯坦福大学和爱丁堡大学,都很快建立了人工智能项目及实验室,同时他们获得来自APRA(美国国防高级研究计划署)等政府机构提供的大批研发资金。,并出现了一批显著的成果。这段时间的重要工作包括通用搜索方法、自然语言处理及机器人处理积木问题等,主要是方法和算法的研究,离实用相差甚远,但是整个行业的乐观情绪让人工智能获得了不少的投资,获得的重要成果包括机器定理证明、跳棋程序、通用解题机、LISP表处理器语言等。第二阶段:专家系统的推广1980年,卡内基梅隆大学为数字设备公司设计了一套名为XCON的“专家系统”。这是一种,采用人工智能程序的系统,可以简单的理解为“知识库+推理机”的组合,XCON是一套具有完整专业知识和经验的计算机智能系统。这套系统在1986年之前能为公司每年节省下来超过四千美元经费。有了这种商业模式后,衍生出了像Symbolics、LispMachines等和IntelliCorp、Aion等这样的硬件,软件公司。在这个时期,仅专家系统产业的价值就高达5亿美元。可怜的是,命运的车轮再一次碾过人工智能,让其回到原点。仅仅在维持了7年之后,这个曾经轰动一时的人工智能系统就宣告结束历史进程。到1987年时,苹果和IBM生产的台式机性能都超过了Symbolics等厂商生产的通用型计算机,专家系统自然风光不再。到80年代晚期,DARPA的新任领导认为人工智能并不是“下一个浪潮”;1991年,人们发现日本人设定的“第五代工程”也没能实现。这些事实情况让人们从对“专家系统”的狂热追捧中一步步走向失望。人工智能研究再次遭遇经费危机。人工智能再一次成为浩瀚太平洋中那一抹夕阳红。第三阶段:深度学习在这个阶段,人工智能其实取得了一些里程碑似的成果。神经网络研究领域领军者Hinton在2006年提出了神经网络DeepLearning算法,使神经网络的能力大大提高,向支持向量机发出挑战。2006年,机器学习领域的泰斗Hinton和他的学生Salakhutdinov在顶尖学术刊物《Scince》上发表了一篇文章,开启了深度学习在学术界和工业界的浪潮。2006年,加拿大多伦多大学教授、机器学习领域泰斗——GeoffreyHinton和他的学生RuslanSalakhutdinov在顶尖学术刊物《科学》上发表了一篇文章,开启了深度学习在学术界和工业界的浪潮。这篇文章有两个主要的信息:1.很多隐层的人工神经网络具有优异的特征学习能力,学习得到的特征对数据有更本质的刻画,从而有利于可视化或分类;2.深度神经网络在训练上的难度,可以通过“逐层初始化”(Layer-wisePre-training)来有效克服,在这篇文章中,逐层初始化是通过无监督学习实现的。自2006年以来,深度学习在学术界持续升温。斯坦福大学、纽约大学、加拿大蒙特利尔大学等成为研究深度学习的重镇。2010年,美国国防部DARPA计划首次资助深度学习项目,参与方有斯坦福大学、纽约大学和NEC美国研究院。支持深度学习的一个重要依据,就是脑神经系统的确具有丰富的层次结构。一个最著名的例子就是Hubel-Wiesel模型,由于揭示了视觉神经的机理而曾获得诺贝尔医学与生理学奖。除了仿生学的角度,目前深度学习的理论研究还基本处于起步阶段,但在应用领域已显现出巨大能量。2011年以来,微软研究院和Google的语音识别研究人员先后采用DNN技术降低语音识别错误率20%~30%,是语音识别领域十多年来最大的突破性进展。2012年,DNN技术在图像识别领域取得惊人的效果,在ImageNet评测上将错误率从26%降低到15%。在这一年,DNN还被应用于制药公司的DrugeActivity预测问题,并获得世界最好成绩,这一重要成果被《纽约时报》报道。2013年。深度学习算法在语音和视觉识别率获得突破性进展,进入第三个高峰。阿尔法围棋(AlphaGo)是第一个击败人类职业围棋选手、第一个战胜围棋世界冠军的人工智能程序,由谷歌(Google)旗下DeepMind公司戴密斯·哈萨比斯领衔的团队开发。其主要工作原理是“深度学习”。2016年3月,阿尔法围棋与围棋世界冠军、职业九段棋手李世石进行围棋人机大战,以4比1的总比分获胜;2016年末2017年初,该程序在中国棋类网站上以“大师”(Master)为注册帐号与中日韩数十位围棋高手进行快棋对决,连续60局无一败绩;2017年5月,在中国乌镇围棋峰会上,它与排名世界第一的世界围棋冠军柯洁对战,以3比0的总比分获胜。围棋界公认阿尔法围棋的棋力已经超过人类职业围棋顶尖水平,在GoRatings网站公布的世界职业围棋排名中,其等级分曾超过排名人类第一的棋手柯洁。三、发展前景在管理系统中的应用:(1)人工智能应用于企业管理的意义不在于提高效率,而是用计算机实现人们非常需要做,但工业工程信息却做不了或很难做到的事。(2)智能教学系统(ITS)是人工智能与教育结合的主要形式。也是今后教学系统的发展方向。信息技术的飞速发展和新的教学体系开发模式的提出和不断完善,推动人们综合运用媒体技术、网络基础和人工智能技术开发新的教学体系。计算机智能教学体系就是其中的代表。在工程领域中应用:(1)医学专家系统是人工智能与专家系统理论和技术在医学领域中的重要应用,具有极大的科研价值和应用价值,它可以帮助医生解决复杂的医学问题,作为医生诊断、治疗的辅助工具。目前,医学智能系统通过其在医学影像方面的重要应用,将其应用在其它医学领域中,并将其不断完善和发展。(2)地质勘探、石油化工等领域是人工智能的主要发挥作用的领地。在技术研究中应用(1)在超声无损检测(NDT)和无损评价(NDE)领域中。目前,主要采用专家系统方法对超声损伤(UT)中缺陷的性质、形状、大小进行判断和分类。(2)人工智能在电子技术领域的应用可谓由来已久。随着网络的迅速发展,网络技术的安全是我们关心的重点。因此,我们必须在传统技术的基础上进行技术的改进和变更,大力发展数据控制技术和人工免疫技术等高效的人工智能技术,以及开发更高级的AI通用和专用语言。另外,人工智能应用领域还有:智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂等方面。四、发展成果人机对弈1996年2月10~17日,GARRYKASPAROV以4:2战胜“深蓝”(DEEPBLUE)。1997年5月3~11日,GARRYKASPAROV以2.5:3.5输于改进后的“深蓝”。2003年2月GARRYKASPAROV3:3战平“小深”(DEEPJUNIOR)。2003年11月GARRYKASPAROV2:2战平“X3D德国人”(X3D-FRITZ)。模式识别采用$模式识别引擎,分支有2D识别引擎,3D识别引擎,驻波识别引擎以及多维识别引擎,2D识别引擎已推出指纹识别,人像识别,文字识别,图像识别,车牌识别,驻波识别引擎已推出语音识别;3D识别引擎已推出指纹识别玉带林中挂(玩游智能版1.25)自动工程自动驾驶(OSO系统)印钞工厂(¥流水线)猎鹰系统(YOD绘图)知识工程以知识本身为处理对象