常用传感器信号测量汇总

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

常用传感器信号测量汇总关键词:传感器;特性;传感器;SCC调理模块;SCXI调理模块;cDAQ传感器是一种物理装置或生物器官,能够探测、感受外界的信号、物理条件(如光、热、湿度)或化学组成(如烟雾),并将探知的信息传递给其他装置或器官。人的五官就是天然的传感器,具有视、听、嗅、味、触觉,大脑就是通过五官来感知外界的信息(图1)。图1人与机器的对应关系工程科学与技术领域的传感器既是对人体五官的工程模拟物,是能将特定的被测量信息(包括物理量、生物量、生物量)按一定的规律转换成某种可用信号输出的器件或装置。可用信号既是便于处理和传输的信号,目前由于电信号最符合这一要求,传感器也可狭义定义为把外界非电信息转换成电信号输出的器件(图2)。图2各类传感器传感器的构成传感器的具体构成根据被测对象、转换原理,使用环境和性能要求的情况有很大差异。自源型是仅含有转换元件的传感器构成形式,它不需要外能源,可直接从外部被测对象吸收能量转换为电效应,但输出的能量较弱。常见的有热电偶、压电器件等。带激励源型是在转换器件外加了辅助能源的构成形式,辅助能源起到激励的作用,可以是电源或磁源,这样不需要变换电路也有较大电量输出。常见的有霍尔传感器等。外源型是由利用被测量实现阻抗变换的转换元件构成,必须通过带外电源的变换电路才能获得电量输出。常见的有电桥等。相同传感器补偿型(图3-a)是使用两个完全相同的转换元件置于同样环境下的构成形式。实际使用其中一个元件进行工作,另一个用于抵消其受到的环境干扰影响。常见的有应变式,固态压阻式传感器等。差动结构补偿型(图3-b)和相同传感器补偿型类似,但其两个转换元件都进行工作,除了可以抵消环境干扰,还使有用的输出值增加。不同传感器补偿型(图3-c)是两个原理和性质不同的转换元件置于同样环境下的构成形式,也是通过一个转换元件给工作的转换元件提供补偿。常见的有热敏电阻的温度补偿,加速度的干扰补偿等。(a)相同传感器补偿型(b)差动结构补偿型(c)不同传感器补偿型图3补偿结构型目前随着计算机技术的发展,传感器和微处理器结合在一起,形成了智能化传感器的概念,这种构成具有了信息处理的功能,前景十分广阔。传感器的分类传感器的种类繁多,分类方式多种多样。对于被测量,可以用不同的传感器来测量;而对于同一原理的传感器,通常又可以测量多种非电量。具体分类可按转换的基本效应、构成原理等分多种,其中又以按照工作原理分类最为详细(表1)。表1传感器类型分类传感器的基本要求无论何种传感器,作为直接面对测试对象的先锋,必须能够快速、准确、可靠而又经济地实现信息转换的基本要求。传感器的工作范围和量程需要足够大,可以满足相应测试的极端要求,需要具备一定的过载能力;必须有能满足要求的灵敏度和精度,要求转换后输出的信号和被测量的输入信号成确定的关系,且比值要大。传感器还需要具备快速的响应能力,稳定可靠的工作能力,较长的寿命和较低的成本,同时维修,校准方便。根据特定的现场应用,有时对传感器的体积和重量都有严格要求,且希望其内部噪声小不易受到外部干扰。最后是传感器输出的信号最好采取通用的标准形式,以便于和外部系统对接。可见选择一款合适的传感器并不轻松,需要根据需求全面综合地考虑,不可马虎。传感器重要指标介绍传感器在检测静态量时的静态特性和检测动态量时的动态特性通常可以分开考虑。对于输入信号的,传感器的数学模型也通常有静态和动态之分。静态特性静态特性表示传感器在被测输入量各个值处于稳定状态时,输入和输出的关系,主要要考虑线性度和随机变化等因素。线性度:线性度又称非线性,是表征传感器输出-输入校准曲线与选定的拟合直线之间的吻合程度的指标。通常用相对误差来表示线性度或非线性误差,有:(公式1)表示输出平均值与拟合直线间的最大偏差;表示理论满量程输出值。所以,选定的拟合直线不同时,计算所得的线性度数值也就不同。选择拟合直线要保证获得尽量小的非线性误差,还要考虑计算是否方便。常见的方法有理论直线法、端点线法、最小二乘法等。迟滞:迟滞是反应传感器在输入量增大和减小的行程过程中输出和输入曲线的不重合程度的指标(图2)。通常用正反行程输出的最大差值计算,有:(公式2)图1迟滞灵敏度:灵敏度(图3)是传感器输出量增量与被测输入量增量之比,线性传感器的灵敏度就是拟合直线的斜率,即:(公式3)非线性传感器的灵敏度不是常数,用dy/dx表示。对于需要外部激励的传感器来说,其灵敏度的表达还要考虑电源电压的因素。图2灵敏度分辨力:分辨力是传感器在规定测量范围内所能测试出的被测输入量的最小变化量,有时用该值相对满量程输入值的百分数表示,称为分辨率。重复性重复性是指输入量按同一方向做全量程连续多次变动时,所得特性曲线间一致程度的指标,各条曲线越接近,重复性越好。重复性误差反映的是校准数据的离散程度,是随机误差计算:(公式4)漂移:漂移指在一定时间间隔内,传感器输出量存在着与被测输入量无关的变化,主要包括零点漂移和灵敏度漂移。零点漂移或灵敏度漂移又可分为时间漂移和温度漂移。时间漂移指在规定的条件下,零点或灵敏度随时间的缓慢变化;温度漂移则是周围温度变化所引起的。(公式5)表示输出最大偏差值;表示温度变化的范围。稳定性:稳定性指传感器在长时间使用时仍保持其性能的能力,一般以在室温条件下经过一段规定的时间后,输出与起始标定时的输出之间的差异表示。静态误差(精度):精度是评价传感器静态性能的综合性指标,指传感器在满量程内任一点输出值相对其理想值的可能偏离(接近)程度,它表示该传感器在静态测量时所得数据的不精确度。精度的测量方法很多,目前国内外尚不统一。动态特性动态特性是反映传感器对于随时间变化的输入量的响应特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用频率响应和阶跃响应来表示。传感器的频率响应特性将各种频率不同而幅值相等的正弦信号输入传感器,其输出正弦信号的幅值、相位与频率之间的关系称为频率响应特性。由于相频特性和幅频特性之间有一定的内在关系,因此表示传感器的频响特性及频域性能指标时主要用幅频特性(图3)。图3典型的对数幅频特性传感器的阶跃响应特性当给静止的传感器输入一个单位阶跃信号时,其输出信号称为阶跃响应(图4,a为一阶系统;b为二阶系统)。图4阶跃响应曲线温度测量温度是一个基本的物理量,自然界中的一切过程无不与温度密切相关。测量温度的热电式传感器是最早开发,应用最广的一类传感器,这类传感器是利用转换元件电磁参量随温度变化的特性,对温度进行检测的。热电偶热电偶传感器(图1)是目前接触式测温中应用最广的热电式传感器,具有结构简单,制作方便,测温范围宽等特点。图1热电偶热电偶测温的基本原理是两种不同材质导体组成闭合回路,当两端存在不同温度时,回路中就会有电流通过,此时两端之间就存在热电势,这就是所谓的塞贝克效应。热电偶直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与仪表连接,显示热电偶所产生的热电势(图2)。图2热电偶原理根据材质不同,热电偶分不同的型号,目前按IEC国际标准,主要有S、B、E、K、R、J、T七种标准。由于热电偶产生的电势较小,且非线性,通常使用热电偶测温度时需要进行放大和线性化。热电偶输出的电热是两结点温度差的函数,通常将热电偶一端作为被测温度端,T0作为固定冷端(参考温度端),通常要求T0保持0度。但实际使用很难满足,所以产生了热电偶冷端补偿的问题,冷端补偿可采用补偿导线或补偿电桥等多种方法。NI公司的SCC和SCXI系列调理产品均有针对热电偶调理的模块。NISCC-TC系列是可调理各类热电偶的单通道模块,该产品支持±100mV范围内的毫伏输入,带有一个2Hz的低通静噪滤波器,增益100的仪用放大器,用于冷端温度补偿的板载热敏电阻以及实现M系列DAQ设备最高扫描速率的缓冲输出。SCC-TC系列模块的输入电路还包含高阻抗偏压电阻器,可用于热电偶开路的检测以及浮动热电偶和接地参考热电偶的处理。同样作为热电偶调理的NISCXI-1102和SCXI-1112每路输入通道也包括了一个仪器放大器和一个2Hz的低通滤波器。采集卡可以用高达333kS/s(每通道3us)的速度扫描它们的模拟输入通道,支持采集的信号范围包括电压以及0到20mA或4到20mA的电流。SCXI每个模块的所有通道都可以被NI数据采集卡的某一路通道采集,并支持另加模块以增加通道数。NI也提供带有专门针对某类应用调理的数据采集卡,即C系列产品。NI9211A专门针对各类型的热电偶测量设计,24位分辨率保证了高精度,内置传感器则实现了冷端温度补偿。该模块还具有250Vrms通道-地面接地隔离,实现了安全、抗干扰和高共模电压范围。NI9211A可加上一个USB9162构成USB-9211A单独使用,也可以插在cDAQ-9172的8槽USB底板上作为cDAQ系统中的一个模块使用。cDAQ模块虽然集采集调理为一体,但是通道数较少,NI9211A可以同时采集4路热电偶,单通道采样率为12S/s。如果需要采集多通道或高速的热电偶信号,可选择M系列数据采集卡加上SCC或SCXI调理模块。热电阻(RTD)热电阻是中低温采集时常用的一种温度传感器,它的主要特点是测量精度高,性能稳定,灵敏度高。热电阻是基于金属导体或半导体的电阻值随温度的增加而增加这一特性来进行温度测量的,其大都由纯金属材料制成,目前使用最多的是铂。热电阻需要电源激励,且不能够瞬时测量温度的变化。工业用热电阻一般采用Pt100,Pt1000,Cu50,Cu100等多种型号。热电阻的引线对测量结果会有较大的影响,目前热电阻的引线主要有三种方式:二线制,三线制,四线制。二线制是在热电阻的两端各连一根导线来引出电阻信号,这种引线方法很简单,但是测量精度不高。在热电阻一端连接一根引线,另一端连接两根引线的方式称为三线制,这种方式通常与电桥配套使用。因为热电阻作为电桥上一个桥臂的电阻,其连接导线也是桥臂的一部分,而这部分电阻是未知且随环境温度变化的,会造成测量误差。采用三线制,将导线一根接到电桥的电源端,其余两根分别接到热电阻所在的桥臂及相邻桥臂上,这样较好地消除了导线电阻带来的测量误差。热电阻两端各连接两根导线的方式称为四线制,其中两根为热电阻提供激励电流,把电阻转换成电压信号,再通过另两根输出电压供采集,这种引线方式可完全消除引线电阻的影响,主要用于高精度的温度检测,但成本也最高。NISCC-RTD01是针对热电偶调理的双通道模块,可连接2、3或4线铂电阻RTD(图3)。NISCC-RTD01的每一通道都带有一个增益为25的放大器和一个30Hz低通滤波器,每一模块上还提供用于1或2个RTD的1mA激励源。NISCXI-1102模块与NISCXI-1581电流激励模块一起使用,可以提供32通道的高精度RTD或热敏电阻调理。1102带有一个2Hz低通滤波器,1581则提供稳定的100µA电流源,从而确保测量精度。由于SCXI采用模块化设计,在应用需求改变时可以方便地扩展数据采集系统。图3SCC-RTD01对4线制RTD的调理NI9217是具有4通道、24位分辨率的模拟输入模块,专门用作100Ω的RTD测量。NI9217可配置两种不同的采样率模式,高采样率模式下采样率可达400S/s(每通道100S/s);高分辨率模式下,采样率为5S/s(每通道1.25S/s),并配有50/60Hz内置噪声抑制功能。NI9217与3线和4线制RTD测量兼容,能自动探测与通道连接的RTD类型,并将每条通道配置成恰当的模式,该模块提供每通道1mA的电流激励,在整个操作温度范围内的精度误差小于1°C。9217还包含NIST校准并具有通道-地面接地双重隔离屏障,实现了安全性、抗扰性和高共模电压范围。热敏电阻热敏电

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功