数字设计原理与实践第4章答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第四章作业答案4.7Writethetruthtableforeachofthefollowinglogicfunctions:(b)F=W’·X+Y’·Z’+X’·ZWXYZF00001000110010000111010010101101101011111000110011101001011111001110101110011110(d)F=A·B’+B’·C+C·D’+C·A’ABCDF00000000100010100111010000101001101011111000110011101011011111000110101110111110(f)F=(A’+B’·C·D)·(B’+C’+D·E’)ABCDEF000001000011000101000111001001001011001101001111010001010011010101010111011000011010011101011110100000100010100100100110101000101010101101101111110000110010110100110110111000111010111100111110(h)F=(((A+B’)’+C)’+D)’ABCDF000000001000101001100100101010011010111010000100101010110110110001101011101111104.9Writethecanonicalsumandproductforeachofthefollowinglogicfunctions:(a)YXF,)2,1(YXYXYXYXYXYXF,,)()()3,0()2,1((b))2,1,0(,BAFBABABABABABAF,,)3()()()()2,1,0((c)CBAF,,)6,4,21(,CBACBACBACBACBAF,,)6,4,21(,)()()()()75,3,0(,,CBACBACBACBACBA,(d))7,6,3,2,0(,,YXWFYXWYXWYXWFYXWYXW,,,,)5,4,1()7,6,3,2,0()()()()()(YXWYXWYXWYXWYXW(e)ZYXFZYXZYXZYXZYXZYXZYXFZYXZYXZYXZYXZYX,,,,)()()()6,5,4()7,3,2,1,0((f))(XWVFXWVXWVXWVXWVF,,,,)7,65,4,3,1,0()2()(,XWVXWVXWVXWVXWVXWVXWV4.15UsingKarnaughmaps,findaminimalsum-of–productsexpressionforeachofthefollowinglogicfunctions.Indicatethedistinguished1-cellsineachmap.CBCABAF(a)CBAF,,)4,210(,,(b)ZYXF,,,W)14,13,12,11,6,5,4,1((c))7,6,2,1(,,CBAF(d)ZYXF,,,W)51,1110,8,732,10(,,,,(e)ZYXF,,,W)41,3111,8,742,1(,,,(f))147,9,12,13,,6,5,4,3,1(,,,DCBAF4.17Findthecompletesumforthelogicfunctionsindrill4.15(d)and(e).ABC00011110011111WXYZ000111100011011111111011ZYXWZXYXZYWFABC00011110011111CBCBABAFWXYZ0001111000110111111111011ZXZYXWFWXYZ000111100011011111111011ZYXWZYXWZYXWZYXWFZYXWZYXWZYXWZYXWABCD0001111000110111111011DBDCAF4.15(d)的完全和:YXZYZXXWF4.15(e)的完全和同4.16(e)的最简和(minimalsum)。4.18UsingKarnaughmaps,findaminimalsum-of–productsexpressionforeachofthefollowinglogicfunctions.Indicatethedistinguished1-cellsineachmap.(a)ZYXF,,,W)15,8(d)41,53,10(,,(b)ZYXF,,,W)15,9,3(d)11,82,10(,,4.19Foreachofthefollowinglogicexpressions,findallofthestatichazardsinthecorrespondingtwo-levelAND-ORorOR-ANDcircuit,anddesignahazard-freecircuitthatrealizesthesamelogicfunction.(c)ZYXZYWFWstatic-1hazard:W,X,Y,Z=00101010,01101110,10011011,11011111。hazardfreelogicexpression:ZWZYZYXZYWFW。(g))()()()'(ZXYXZYXWZYWFstatic-0hazard:W,X,Y,Z=00000100,00000001,01000101,01010111,01000110,00100110,11101010。hazardfreelogicexpression:)()()()()(ZXYXZYXWYWF4.58Findaminimalsum-of–productsexpressionforeachofthefollowinglogicfunctions.(a)ZYXXYXZF(b)DCBDCADCBDCAFYXZFDF4.59Findaminimalsum-of–productsexpressionforeachofthefollowinglogicfunctionsusinga5-variablemap.(a)ZYXF,,,WV,)7,29,3116,20,25,25,7,13,15,(WXYZ000111100011011d11dd1101ZXYXXWFWXYZ00011110001d0111111d101YXWYXWZXWZYWF或ZYXYXWZXWZYWFXYZ000111100111111ABCD000111100001111111111110ZYWVZWVZXVF4.35YXYXF,逻辑电路图略。真值表:4.55WXYZ00011110000111111110WXYZ0001111000110111111110V=0V=1XYF000011101110P1P0Q1Q00001111000011111111011P2Q2=00P1P0Q1Q000011110001111011111111111101111P2Q2=01P1P0Q1Q00001111000011110P2Q2=10P1P0Q1Q00001111000011111111011P2Q2=11021030101020210021121122PQQQPPQQPPQQPPPQQPQPPQQPF4.61(Hamletcircuit)CompletethetimingdiagramandexplainthefunctionofthecircuitinFigureX4.61.Wheredoestheciucuitgetitsname.

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功