复习课二次函数y=x2-x-6的图象顶点坐标是__________对称轴是_________。(—,-—)12524x=—12一般式y=ax²+bx+c顶点式y=a(x-h)²+k二次函数的解析式:abacabxa44)2(22(a≠0)对称轴:直线x=h顶点:(h,k)abacababx44,222顶点坐标是:,对称轴为:直线二次函数的图象:是一条抛物线二次函数的图象的性质:开口方向;对称轴;顶点坐标;增减性;最值二次函数y=x2-x-6的图象顶点坐标是__________对称轴是_________。(—,-—)12524x=—12画二次函数的大致图象:①画对称轴②确定顶点③确定与y轴的交点④确定与x轴的交点⑤确定与y轴交点关于对称轴对称的点⑥连线x=—12(—,-—)12524(0,-6)(-2,0)(3,0)0xy(1,-6)二次函数y=x2-x-6的图象顶点坐标是__________对称轴是_________。(—,-—)12524x=—12x=—12(—,-—)12524(0,-6)(-2,0)(3,0)0xy(1,-6)增减性:当时,y随x的增大而减小当时,y随x的增大而增大21x21x最值:当时,y有最值,是21x小425函数值y的正负性:当时,y0当时,y=0当时,y0x-2或x3x=-2或x=3-2x3二次函数y=ax²+bx+c的图象如图所示,则在下列各不等式中成立的个数是____________1-10xy①abc0②a+b+c0③a+cb④2a+b=0⑤2b-4ac0开口方向:向上a0;向下a0对称轴:在y轴右侧a、b异号;在y轴左侧a、b同号与y轴的交点:在y轴正半轴c0;在y轴负半轴c0与x轴的交点:两个不同b2-4ac0;唯一b2-4ac=0;没有b2-4ac0a+b+c由当x=1时的点的位置决定;a-b+c由当x=-1时的点的位置决定y=ax2y=ax2+ky=a(x–h)2y=a(x–h)2+k上下平移左右平移上下平移左右平移各种顶点式的二次函数的关系左加右减上加下减将向左平移3个单位,再向下平移2个单位后,所得的抛物线的关系式是221xy2)3(212xy(0,0)(0,k)(h,0)(h,k)2)3(212xy抛物线关于x轴对称的抛物线解析式是解题思路:①将原抛物线写成顶点式y=a(x-h)2+k②写出顶点(h,k)③写出顶点(h,k)关于x轴的点的坐标(h,-k)则关于x轴对称的抛物线解析式是y=-a(x-h)2-k关于x轴对称:关于y轴对称:①将原抛物线写成顶点式y=a(x-h)2+k②写出顶点(h,k)③写出顶点(h,k)关于y轴的点的坐标(-h,k)则关于x轴对称的抛物线解析式是y=a(x+h)2+k2)3(212xyyyxx,yyxx,如图,在同一坐标系中,函数y=ax+b与y=ax2+bx(ab≠0)的图象只可能是()xyoABxyoCxyoDxyo施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM=12米,现以O点为原点,OM所在直线为x轴建立平面直角坐标系,如图所示,yxoPBCADM(1)直接写出点M及抛物线顶点P的坐标(2)求出这条抛物线的函数关系式(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABCD,使A、D两点在抛物线上,B、C两点在地面OM上,为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少?请你帮忙计算一下.解:(1)点M的坐标是(12,0),点P的坐标是(6,6)(2)设此抛物线解析式为y=a(x-6)2+6又因为它经过(0,0),则0=a(0-6)2+661a6)6(612xy此抛物线解析式为施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM=12米,现以O点为原点,OM所在直线为x轴建立平面直角坐标系,如图所示,yxoPBCADM(1)直接写出点M及抛物线顶点P的坐标(2)求出这条抛物线的函数关系式(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABCD,使A、D两点在抛物线上,B、C两点在地面OM上,为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少?请你帮忙计算一下.6)6(612xy(3)设点A的横坐标为m,则点A的纵坐标是mmm261:,6)6(6122即∴AD=BC=12-2m,AB=CD=mm2612∴AB+AD+DC=mmm212)261(2215)3(312m当m=3时,即OB=3米时,3根木杆长度之和的最大值为15米.施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM=12米,现以O点为原点,OM所在直线为x轴建立平面直角坐标系,如图所示,yxoPBCADM6)6(612xy此抛物线解析式为如果现有一辆宽4米,高4米的卡车准备要通过这个隧道,问它能顺利通过吗?解:当x=4时,6)64(612y315即当这个隧道在中心两旁4米宽时的顶的高度达到了5米多,而车的高度只有4米,所以这两卡车能顺利通过.22(1)_______.kkykxk练习2、函数是二次函数,则-2练习1、在y=-x2,y=2x2-+3,y=100-5x2,y=-2x2+5x3-3中有个是二次函数。2x点评:定义要点(1)a≠0.(2)最高次数为2.(3)代数式一定是整式.有关练习4、二次函数图象的顶点坐标和对称轴方程为()A、(1,-2),x=1B、(1,2),x=1C、(-1,-2),x=-1D、(-1,2),x=-12)1(2xyDA3、抛物线的对称轴及顶点坐标分别是()A、y轴,(0,-4)B、x=3,(0,4)C、x轴,(0,0)D、y轴,(0,3)342xy5、函数的开口方向,顶点坐标是,对称轴是.当x时.y随x的增大而减小。当x时.y有最为.32212xxy向上1(1,)61x直线<-1=-1小1661)1(212xy顶点坐标公式点评:二次函数的几种表现形式及图像)0(2aaxy)0(2acaxy)0()(2ahxay)0()(2akhxay)0(2acbxaxy①、②、③、④、⑤、(顶点式)(一般式)xyo6、将抛物线y=-3x2-1向上平移2个单位,再向右平移3个单位,所得的抛物线的表达式为,7.若把抛物线y=x2+bx+c向左平移3个单位,再向上平移2个单位,得抛物线y=x2-2x+2,则b=,c=,223(3)1231826yxxx-815注意:顶点式中,上+下-,左+右-8、二次函数y=ax2+bx+c(a≠0)与一次函数y=ax+c在同一坐标系内的大致图象是()xyoxyoxyoxyo(C)(D)(B)(A)C-29、二次函数y=ax2+bx+c(a≠0)的几个特例:1)、当x=1时,2)、当x=-1时,3)、当x=2时,4)、当x=-2时,y=y=y=y=6)、2a+b0.xyo1-12>0<0>0<0>02212baabab5)、b²-4ac0.>a+b+ca-b+c4a+2b+c4a-2b+c选择合适的方法求二次函数解析式:10、抛物线经过(2,0)(0,-2)(-1,0)三点。11、抛物线的顶点坐标是(6,-2),且与X轴的一个交点的横坐标是8。22yxx2211(6)261622yxxx三种思路:21yaxbxc、一般式:22()yaxhk、顶点式:已知顶点坐标、对称轴或最值已知任意三点坐标12()()yaxxxx3、交点式:已知抛物线与x轴的交点坐标(x1,0).(x2,0)12.已知抛物线y=x²-mx+m-1.(1)若抛物线经过坐标系原点,则m______;=1(2)若抛物线与y轴交于正半轴,则m______;(3)若抛物线的对称轴为y轴,则m______。(4)若抛物线与x轴只有一个交点,则m_______.>1=2=014、求抛物线①与y轴的交点坐标;②与x轴的两个交点间的距离.③x取何值时,y>0?2218yx13、不论x为何值时,函数y=ax2+bx+c(a≠0)的值永远为正的条件是_____a0,b²-4ac0-316(-1,8)-115、如图①,已知抛物线y=ax²+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.(3)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(4)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.15.如图①,已知抛物线y=ax²+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.Q(1,0)(-3,0)(0,3)y=-x²-2x+3Q(-1,2)(3)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.以M为圆心,MC为半径画弧,与对称轴有两交点;以C为圆心,MC为半径画弧,与对称轴有一个交点(MC为腰)。作MC的垂直平分线与对称轴有一个交点(MC为底边)。(1,0)(-3,0)(0,3)(-1,0)(4)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.EF(1,0)(0,3)(-3,0)(m,-m²-2m+3)