江苏省南京市玄武区2016届九年级上学期期末数学试卷一、选择题(本大题共6小题,每小题2分,共计12分)1.一元二次方程x2=1的解是()A.x=1B.x=﹣1C.x=±1D.x=02.⊙O的半径为1,同一平面内,若点P与圆心O的距离为1,则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定3.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A.众数B.中位数C.平均数D.极差4.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,则方程ax2+bx+c=0的一个解的范围是()x6.176.186.196.20y﹣0.03﹣0.010.020.04A.﹣0.01<x<0.02B.6.17<x<6.18C.6.18<x<6.19D.6.19<x<6.205.若点A(﹣1,a),B(2,b),C(3,c)在抛物线y=x2上,则下列结论正确的是()A.a<c<bB.b<a<cC.c<b<aD.a<b<c6.如图,点E在y轴上,⊙E与x轴交于点A、B,与y轴交于点C、D,若C(0,9),D(0,﹣1),则线段AB的长度为()A.3B.4C.6D.8二、填空题(本大题共10小题,每小题2分,共20分)7.若=3,则=.8.一组数据:2,3,﹣1,5的极差为.9.一元二次方程x2﹣4x+1=0的两根是x1,x2,则x1•x2的值是.10.制造一种产品,原来每件的成本是100元,由于连续两次降低成本,现在的成本是81元.设平均每次降低成本的百分率为x,则列方程为.11.在平面直角坐标系中,将抛物线y=2x2先向右平移3个单位,再向上平移1个单位,得到的抛物线的函数表达式为.12.已知圆锥的底面半径为6cm,母线长为8cm,它的侧面积为cm2.13.如图,根据所给信息,可知的值为.14.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,则当x=3时,y=.x…﹣3﹣2﹣101…y…73113…15.如图,AB是⊙O的一条弦,C是⊙O上一动点且∠ACB=45°,E、F分别是AC、BC的中点,直线EF与⊙O交于点G、H.若⊙O的半径为2,则GE+FH的最大值为.16.如图,在矩形ABCD中,M、N分别是边AD、BC的中点,点P、Q在DC边上,且PQ=DC.若AB=16,BC=20,则图中阴影部分的面积是.三、解答题(本大题共11小题,共88分.解答时应写出文字说明、推理过程或演算步骤)17.(1)解方程:(x+1)2=9;(2)解方程:x2﹣4x+2=0.18.已知关于x的一元二次方程(a+1)x2﹣x+a2﹣2a﹣2=0有一根是1,求a的值.19.射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次平均成绩中位数甲108981099①乙107101098②9.5(1)完成表中填空①;②;(2)请计算甲六次测试成绩的方差;(3)若乙六次测试成绩方差为,你认为推荐谁参加比赛更合适,请说明理由.20.一只不透明的袋子中,装有三个分别标记为“1”、“2”、“3”的球,这三个球除了标记不同外,其余均相同.搅匀后,从中摸出一个球,记录球上的标记后放回袋中并搅匀,再从中摸出一个球,再次记录球上的标记.(1)请列出上述实验中所记录球上标记的所有可能的结果;(2)求两次记录球上标记均为“1”的概率.21.如图,在半径为2的⊙O中,弦AB长为2.(1)求点O到AB的距离.(2)若点C为⊙O上一点(不与点A,B重合),求∠BCA的度数.22.已知二次函数y=x2﹣2x﹣3.(1)该二次函数图象的对称轴为;(2)判断该函数与x轴交点的个数,并说明理由;(3)下列说法正确的是(填写所有正确说法的序号)①顶点坐标为(1,﹣4);②当y>0时,﹣1<x<3;③在同一平面直角坐标系内,该函数图象与函数y=﹣x2+2x+3的图象关于x轴对称.23.如图,在四边形ABCD中,AC、BD相交于点F,点E在BD上,且==.(1)求证:∠BAE=∠CAD;(2)求证:△ABE∽△ACD.24.课本1.4有这样一道例题:问题4:用一根长22cm的铁丝:(1)能否围成面积是30cm2的矩形?(2)能否围成面积是32cm2的矩形?据此,一位同学提出问题:“用这根长22cm的铁丝能否围成面积最大的矩形?若能围成,求出面积最大值;若不能围成,请说明理由.”请你完成该同学提出的问题.25.如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)当BD=6,AB=10时,求⊙O的半径.26.已知一次函数y=x+4的图象与二次函数y=ax(x﹣2)的图象相交于A(﹣1,b)和B,点P是线段AB上的动点(不与A、B重合),过点P作PC⊥x轴,与二次函数y=ax(x﹣2)的图象交于点C.(1)求a、b的值(2)求线段PC长的最大值;(3)若△PAC为直角三角形,请直接写出点P的坐标.27.如图,折叠边长为a的正方形ABCD,使点C落在边AB上的点M处(不与点A,B重合),点D落在点N处,折痕EF分别与边BC、AD交于点E、F,MN与边AD交于点G.证明:(1)△AGM∽△BME;(2)若M为AB中点,则==;(3)△AGM的周长为2a.江苏省南京市玄武区2016届九年级上学期期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共计12分)1.一元二次方程x2=1的解是()A.x=1B.x=﹣1C.x=±1D.x=0【考点】解一元二次方程-直接开平方法.【专题】计算题.【分析】方程利用平方根定义开方即可求出解.【解答】解:x2=1,开方得:x=±1.故选C【点评】此题考查了解一元二次方程﹣直接开平方法,利用此方法解方程时,首先将方程左边化为完全平方式,右边为非负常数,利用平方根定义开方转化为两个一元一次方程来求解.2.⊙O的半径为1,同一平面内,若点P与圆心O的距离为1,则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定【考点】点与圆的位置关系.【分析】点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵OP=1,⊙O的半径为1,即d=r,∴点P与⊙O的位置关系是点P在⊙O上,故选:B.【点评】此题考查点与圆的关系,注意:熟记点和圆的位置关系与数量之间的等价关系是解决问题的关键.3.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A.众数B.中位数C.平均数D.极差【考点】统计量的选择.【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选B.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.4.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,则方程ax2+bx+c=0的一个解的范围是()x6.176.186.196.20y﹣0.03﹣0.010.020.04A.﹣0.01<x<0.02B.6.17<x<6.18C.6.18<x<6.19D.6.19<x<6.20【考点】图象法求一元二次方程的近似根.【分析】观察表格可知,y随x的值逐渐增大,ax2+bx+c的值在6.18~6.19之间由负到正,故可判断ax2+bx+c=0时,对应的x的值在6.18~6.19之间.【解答】解:由表格中的数据看出﹣0.01和0.02更接近于0,故x应取对应的范围.故选C.【点评】本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y由正变为负时,自变量的取值即可.5.若点A(﹣1,a),B(2,b),C(3,c)在抛物线y=x2上,则下列结论正确的是()A.a<c<bB.b<a<cC.c<b<aD.a<b<c【考点】二次函数图象上点的坐标特征.【分析】根据二次函数的性质,通过三点与对称轴距离的远近来比较函数值的大小.【解答】解:由抛物线y=x2可知对称轴为y轴,∵抛物线开口向上,|﹣1|<|2|<|3|,∴a<b<c.故选D.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.6.如图,点E在y轴上,⊙E与x轴交于点A、B,与y轴交于点C、D,若C(0,9),D(0,﹣1),则线段AB的长度为()A.3B.4C.6D.8【考点】垂径定理;坐标与图形性质;勾股定理.【分析】连接EB,由题意得出OD=1,OC=9,∴CD=10,得出EB=ED=CD=5,OE=4,由垂径定理得出AO=BO=AB,由勾股定理求出OB,即可得出结果.【解答】解:连接EB,如图所示:∵C(0,9),D(0,﹣1),∴OD=1,OC=9,∴CD=10,∴EB=ED=CD=5,OE=5﹣1=4,∵AB⊥CD,∴AO=BO=AB,OB===3,∴AB=2OB=6;故选:C.【点评】本题考查了垂径定理、坐标与图形性质、勾股定理;熟练掌握垂径定理,由勾股定理求出OB是解决问题的关键.二、填空题(本大题共10小题,每小题2分,共20分)7.若=3,则=4.【考点】比例的性质.【分析】根据合比性质:=⇒=,可得答案.【解答】解:由合比性质,得==4,故答案为:4.【点评】本题考查了比例的性质,利用合比性质是解题关键.8.一组数据:2,3,﹣1,5的极差为6.【考点】极差.【分析】根据极差的概念求解.【解答】解:极差为:5﹣(﹣1)=6.故答案为:6.【点评】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.9.一元二次方程x2﹣4x+1=0的两根是x1,x2,则x1•x2的值是1.【考点】根与系数的关系.【分析】直接根据根与系数的关系求解即可.【解答】解:∵一元二次方程x2﹣4x+1=0的两根是x1,x2,∴x1•x2=1.故答案为:1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.10.制造一种产品,原来每件的成本是100元,由于连续两次降低成本,现在的成本是81元.设平均每次降低成本的百分率为x,则列方程为100(1﹣x)2=81.【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】原来成本是100元,设每次降低的百分比是x,则第一次降价后的成本为100﹣100x,第二次降价后的成本为(100﹣100x)﹣(100﹣100x)x=100(1﹣x)2元,据此即可列出方程即可.【解答】解:设每次降低的百分比是x,根据题意得:100(1﹣x)2=81,故答案为:100(1﹣x)2=81.【点评】本题考查了由实际问题抽象出一元二次方程,设每次降低的百分比是x,能表示出两次连续降价后的成本是100(1﹣x)2是关键.11.在平面直角坐标系中,将抛物线y=2x2先向右平移3个单位,再向上平移1个单位,得到的抛物线的函数表达式为y=2(x﹣3)2+1.【考点】二次函数图象与几何变换.【分析】由抛物线平移不改变二次项系数a的值,根据点的平移规律“左减右加,上加下减”可知移动后的顶点坐标,再由顶点式可求移动后的函数表达式.【解答】解:原抛物线的顶点为(0,0),向右平移3个单位,再向上平移1个单位后,那么新抛物线的顶点为:(3,1).可设新抛物线的解析式为y=2(x﹣h)2+k,代入得y=2(x﹣3)2+1.故答案是:y=2(x﹣3)2+1.【点评】本题考查了二