4CHAPTERARM7指令集目录1.ARM处理器寻址方式2.指令集介绍ARM指令集Thumb指令集ARM指令长度概述ARM指令长度指令集可以是以下任一种32bits长(ARM状态)16bits长(Thumb状态)ARM7TDMI支持3种数据类型字节(8-bit)半字(16-bit)字(32-bit)字必须被排成4个字节边界对齐,半字必须被排列成2个字节边界对齐向后兼容:新版本增加指令,并保持指令向后兼容;Load-store结构*load/store–从存储器中读某个值,操作完后再将其放回存储器中只对存放在寄存器的数据进行处理对于存储器中的数据,只能使用load/store指令进行存取ARM指令长度概述第4章目录1.ARM处理器寻址方式2.ARM指令集第4章ARM7TDMI(-S)指令系统简介ARM处理器是基于精简指令集计算机(RISC)原理设计的,指令集和相关译码机制较为简单。ARM7TDMI(-S)具有32位ARM指令集和16位Thumb指令集,ARM指令集效率高,但是代码密度低;而Thumb指令集具有较高的代码密度,却仍然保持ARM的大多数性能上的优势,它是ARM指令集的子集。所有的ARM指令都是可以有条件执行的,而Thumb指令仅有一条指令具备条件执行功能。ARM程序和Thumb程序可相互调用,相互之间的状态切换开销几乎为零。第4章ARM7TDMI(-S)指令系统ARM指令集与Thumb指令集的关系Thumb指令集具有灵活、小巧的特点ARM指令集支持ARM核所有的特性,具有高效、快速的特点4.1ARM处理器寻址方式寻址方式分类寻址方式是根据指令中给出的地址码字段来实现寻找真实操作数地址的方式。ARM处理器具有9种基本寻址方式。1.寄存器寻址;2.立即寻址;3.寄存器移位寻址;4.寄存器间接寻址;5.基址寻址;6.多寄存器寻址;7.堆栈寻址;8.块拷贝寻址;9.相对寻址。操作数的值在寄存器中,指令中的地址码字段指出的是寄存器编号,指令执行时直接取出寄存器值来操作。寄存器寻址指令举例如下:MOVR1,R2;将R2的值存入R1SUBR0,R1,R2;将R1的值减去R2的值,结果保存到R00xAA0x55R2R14.1ARM处理器寻址方式寻址方式分类——寄存器寻址MOVR1,R20xAA立即寻址指令中的操作码字段后面的地址码部分即是操作数本身,也就是说,数据就包含在指令当中,取出指令也就取出了可以立即使用的操作数(这样的数称为立即数)。立即寻址指令举例如下:SUBSR0,R0,#1;R0减1,结果放入R0,并且影响标志位MOVR0,#0xFF000;将立即数0xFF000装入R0寄存器0x55R0MOVR0,#0xFF00程序存储4.1ARM处理器寻址方式寻址方式分类——立即寻址MOVR0,#0xFF000xFF00从代码中获得数据寄存器移位寻址是ARM指令集特有的寻址方式。当第2个操作数是寄存器移位方式时,第2个寄存器操作数在与第1个操作数结合之前,选择进行移位操作。寄存器移位寻址指令举例如下:MOVR0,R2,LSL#3;R2的值左移3位,结果放入R0,;即是R0=R2×8ANDSR1,R1,R2,LSLR3;R2的值左移R3位,然后和R1相;“与”操作,结果放入R10x55R0R20x014.1ARM处理器寻址方式寻址方式分类——寄存器移位寻址MOVR0,R2,LSL#30x080x08逻辑左移3位寄存器间接寻址指令中的地址码给出的是一个通用寄存器的编号,所需的操作数保存在寄存器指定地址的存储单元中,即寄存器为操作数的地址指针。寄存器间接寻址指令举例如下:LDRR1,[R2];将R2指向的存储单元的数据读出;保存在R1中SWPR1,R1,[R2];将寄存器R1的值和R2指定的存储;单元的内容交换0x55R0R20x400000000xAA0x400000004.1ARM处理器寻址方式寻址方式分类——寄存器间接寻址LDRR0,[R2]0xAA基址寻址就是将基址寄存器的内容与指令中给出的偏移量(4K)相加/减,形成操作数的有效地址。基址寻址用于访问基址附近的存储单元,常用于查表、数组操作、功能部件寄存器访问等。寄存器间接寻址是偏移量为0的基址加偏移寻址。基址寻址指令举例如下(前索引寻址):LDRR2,[R3,#0x0C];读取R3+0x0C地址上的存储单元;的内容,放入R2STRR1,[R0,#-4]!;先R0=R0-4,然后把R0的值寄存;到保存到R1指定的存储单元4.1ARM处理器寻址方式寻址方式分类——基址寻址0x55R2R30x400000000xAA0x4000000CLDRR2,[R3,#0x0C]0xAA将R3+0x0C作为地址装载数据基址寻址指令举例如下:LDRR0,[R1],#4;R0=[R1],R1=R1+4;后索引基址寻址;ARM这种自动索引机制不消耗额外的时间LDRR0,[R1,R2];R0=[R1+R2]4.1ARM处理器寻址方式寻址方式分类——基址寻址多寄存器寻址一次可传送几个寄存器值,允许一条指令传送16个寄存器的任何子集或所有寄存器。多寄存器寻址指令举例如下:LDMIAR1!,{R2-R7,R12};将R1指向的单元中的数据读出到;R2~R7、R12中(R1自动加4)STMIAR0!,{R2-R7,R12};将寄存器R2~R7、R12的值保;存到R0指向的存储;单元中;(R0自动加4)0x40000000R1R20x??0x010x400000000x??R3R40x??R60x??0x020x030x040x400000040x400000080x4000000C存储器4.1ARM处理器寻址方式寻址方式分类——多寄存器寻址LDRR1!,{R2-R4,R6}0x010x020x030x040x40000010堆栈是一个按特定顺序进行存取的存储区,操作顺序为“后进先出”。堆栈寻址是隐含的,它使用一个专门的寄存器(堆栈指针)指向一块存储区域(堆栈),指针所指向的存储单元即是堆栈的栈顶。存储器堆栈可分为两种:向上生长:向高地址方向生长,称为递增堆栈向下生长:向低地址方向生长,称为递减堆栈4.1ARM处理器寻址方式寻址方式分类——堆栈寻址4.1ARM处理器寻址方式寻址方式分类——堆栈寻址栈底栈顶栈区SP堆栈存储区栈顶栈底栈区SP向下增长向上增长0x123456780x12345678堆栈压栈堆栈压栈栈顶SP栈顶SP栈底空堆栈栈底满堆栈堆栈指针指向最后压入的堆栈的有效数据项,称为满堆栈;堆栈指针指向下一个待压入数据的空位置,称为空堆栈。4.1ARM处理器寻址方式寻址方式分类——堆栈寻址0x123456780x12345678栈顶SP0x12345678栈顶SP压栈压栈所以可以组合出四种类型的堆栈方式:满递增:堆栈向上增长,堆栈指针指向内含有效数据项的最高地址。指令如LDMFA、STMFA等;空递增:堆栈向上增长,堆栈指针指向堆栈上的第一个空位置。指令如LDMEA、STMEA等;满递减:堆栈向下增长,堆栈指针指向内含有效数据项的最低地址。指令如LDMFD、STMFD等;空递减:堆栈向下增长,堆栈指针向堆栈下的第一个空位置。指令如LDMED、STMED等。4.1ARM处理器寻址方式寻址方式分类——堆栈寻址多寄存器传送指令用于将一块数据从存储器的某一位置拷贝到另一位置。如:STMIAR0!,{R1-R7};将R1~R7的数据保存到存储器中。;存储指针R0在保存第一个值之后增加,;增长方向为向上增长。STMIBR0!,{R1-R7};将R1~R7的数据保存到存储器中。;存储指针R0在保存第一个值之前增加,;增长方向为向上增长。4.1ARM处理器寻址方式寻址方式分类——块拷贝寻址相对寻址是基址寻址的一种变通。由程序计数器PC提供基准地址,指令中的地址码字段作为偏移量,两者相加后得到的地址即为操作数的有效地址。相对寻址指令举例如下:BLSUBR1;调用到SUBR1子程序BEQLOOP;条件跳转到LOOP标号处...LOOPMOVR6,#1...SUBR1...4.1ARM处理器寻址方式寻址方式分类——相对寻址第4章目录1.ARM处理器寻址方式2.ARM指令集简单的ARM程序;文件名:TEST1.S;功能:实现两个寄存器相加;说明:使用ARMulate软件仿真调试AREAExample1,CODE,READONLY;声明代码段Example1ENTRY;标识程序入口CODE32;声明32位ARM指令STARTMOVR0,#0;设置参数MOVR1,#10LOOPBLADD_SUB;调用子程序ADD_SUBBLOOP;跳转到LOOPADD_SUBADDSR0,R0,R1;R0=R0+R1MOVPC,LR;子程序返回END;文件结束使用“;”进行注释标号顶格写实际代码段声明文件结束简单的ARM程序;文件名:TEST1.S;功能:实现两个寄存器相加;说明:使用ARMulate软件仿真调试AREAExample1,CODE,READONLY;声明代码段Example1ENTRY;标识程序入口CODE32;声明32位ARM指令STARTMOVR0,#0;设置参数MOVR1,#10LOOPBLADD_SUB;调用子程序ADD_SUBBLOOP;跳转到LOOPADD_SUBADDSR0,R0,R1;R0=R0+R1MOVPC,LR;子程序返回END;文件结束ARM指令小节目录1.指令格式2.条件码3.存储器访问指令4.数据处理指令5.乘法指令6.ARM分支指令7.杂项指令8.伪指令ARM指令小节目录1.指令格式2.条件码3.存储器访问指令4.数据处理指令5.乘法指令6.ARM分支指令7.杂项指令8.伪指令4.2指令集介绍ARM指令集——指令格式ARM是三地址指令格式,指令的基本格式如下:4.2指令集介绍ARM指令集——基本指令格式opcode{cond}{S}Rd,Rn{,operand2}其中号内的项是必须的,{}号内的项是可选的。各项的说明如下:opcode:指令助记符;cond:执行条件;S:是否影响CPSR寄存器的值;Rd:目标寄存器;Rn:第1个操作数的寄存器;operand2:第2个操作数;指令语法目标寄存器(Rd)源寄存器1(Rn)源寄存器2(Rm)ADDr3,r1,r2r3r1r2例:ARM指令的基本格式如下:4.2指令集介绍ARM指令集——第2个操作数opcode{cond}{S}Rd,Rn{,operand2}灵活的使用第2个操作数“operand2”能够提高代码效率。它有如下的形式:#immed_8r——常数表达式;Rm——寄存器方式;Rm,shift——寄存器移位方式;4.2指令集介绍ARM指令集——第2个操作数#immed_8r——常数表达式该常数必须对应8位位图,即一个8位的常数通过循环右移偶数位得到。循环右移10位0x12000100100x00000000000x00000000000x00000000000x00000000000x00000000000x80100000000x04000001008位常数4.2指令集介绍ARM指令集——第2个操作数#immed_8r——常数表达式该常数必须对应8位位图,即一个8位的常数通过循环右移偶数位得到。例如:ANDR1,R2,#0x0F4.2指令集介绍ARM指令集——第2个操作数Rm——寄存器方式在寄存器方式下,操作数即为寄存器的数值。例如:SUBR1,R1,R24.2指令集介绍ARM指令集——第2个操作数Rm,shift——寄存器移位方式将寄存器的移位结果作为操作数(移位操作不消耗额外的时间),但Rm值保持不变,移位方法如下:操作码说明操作码说明ASR#n算术右移n位ROR#n循环右移n位LSL#n逻辑左移n位RRX带扩展的循环右移1位LSR#n逻辑右移n位Ty