《概率论与数理统计》第二章习题解答

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1第二章随机变量及其分布1、解:设公司赔付金额为X,则X的可能值为;投保一年内因意外死亡:20万,概率为0.0002投保一年内因其他原因死亡:5万,概率为0.0010投保一年内没有死亡:0,概率为1-0.0002-0.0010=0.9988所以X的分布律为:X2050P0.00020.00100.99882、一袋中有5只乒乓球,编号为1、2、3、4、5,在其中同时取三只,以X表示取出的三只球中的最大号码,写出随机变量X的分布律解:X可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522CCPXPCCPXPCCPXP中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为也可列为下表X:3,4,5P:106,103,1013、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X表示取出次品的只数,(1)求X的分布律,(2)画出分布律的图形。解:任取三只,其中新含次品个数X可能为0,1,2个。3522)0(315313CCXP3512)1(31521312CCCXP351)2(31511322CCCXP再列为下表X:0,1,2P:351,3512,35224、进行重复独立实验,设每次成功的概率为p,失败的概率为q=1-p(0p1)(1)将实验进行到出现一次成功为止,以X表示所需的试验次数,求X的分布律。(此时称X服从以p为参数的几何分布。)(2)将实验进行到出现r次成功为止,以Y表示所需的试验次数,求Y的分布律。x12OP2(此时称Y服从以r,p为参数的巴斯卡分布。)(3)一篮球运动员的投篮命中率为45%,以X表示他首次投中时累计已投篮的次数,写出X的分布律,并计算X取偶数的概率。解:(1)P(X=k)=qk-1pk=1,2,……(2)Y=r+n={最后一次实验前r+n-1次有n次失败,且最后一次成功},,2,1,0,)(111npqCppqCnrYPrnnnrrnnnr其中q=1-p,或记r+n=k,则P{Y=k}=,1,,)1(11rrkppCrkrrk(3)P(X=k)=(0.55)k-10.45k=1,2…P(X取偶数)=311145.0)55.0()2(1121kkkkXP5、一房间有3扇同样大小的窗子,其中只有一扇是打开的。有一只鸟自开着的窗子飞入了房间,它只能从开着的窗子飞出去。鸟在房子里飞来飞去,试图飞出房间。假定鸟是没有记忆的,鸟飞向各扇窗子是随机的。(1)以X表示鸟为了飞出房间试飞的次数,求X的分布律。(2)户主声称,他养的一只鸟,是有记忆的,它飞向任一窗子的尝试不多于一次。以Y表示这只聪明的鸟为了飞出房间试飞的次数,如户主所说是确实的,试求Y的分布律。(3)求试飞次数X小于Y的概率;求试飞次数Y小于X的概率。解:(1)X的可能取值为1,2,3,…,n,…P{X=n}=P{前n-1次飞向了另2扇窗子,第n次飞了出去}=31)32(1n,n=1,2,……(2)Y的可能取值为1,2,3P{Y=1}=P{第1次飞了出去}=31P{Y=2}=P{第1次飞向另2扇窗子中的一扇,第2次飞了出去}=312132P{Y=3}=P{第1,2次飞向了另2扇窗子,第3次飞了出去}=31!3!23231}|{}{}|{}{}{)3(kkkYYXPkYPkYYXPkYPYXP0}1|{YYXP全概率公式并注意到278313231313131}{}{32kkXPkYP}{}|{,kXPkYYXPYX独立即注意到同上,31}|{}{}{kkYYXPkYPYXP381192743192313131}{}{31kkXPkYP故8138){}{1}{YXPYXPXYP6、一大楼装有5个同类型的供水设备,调查表明在任一时刻t每个设备使用的概率为0.1,问在同一时刻(1)恰有2个设备被使用的概率是多少?0729.0)9.0()1.0()2(322525225CqpCXP(2)至少有3个设备被使用的概率是多少?00856.0)1.0()9.0()1.0()9.0()1.0()3(5554452335CCCXP(3)至多有3个设备被使用的概率是多少?3225415505)9.0()1.0()9.0(1.0)9.0()3(CCCXP99954.0)9.0()1.0(2335C(4)至少有一个设备被使用的概率是多少?40951.059049.01)0(1)1(XPXP7、设事件A在每一次试验中发生的概率为0.3,当A发生不少于3次时,指示灯发出信号。(1)进行了5次独立试验,求指示灯发出信号的概率。(2)进行了7次独立试验,求指示灯发出信号的概率解:设X为A发生的次数。则0.3,.XBnn=5,7B:“指示等发出信号“①3PBPX55530.30.70.163kkkkC②3PBPX72301kPXKPXK71622510.70.30.70.30.70.353GG8、甲、乙二人投篮,投中的概率各为0.6,0.7,令各投三次。求(1)二人投中次数相等的概率。记X表甲三次投篮中投中的次数Y表乙三次投篮中投中的次数由于甲、乙每次投篮独立,且彼此投篮也独立。P(X=Y)=P(X=0,Y=0)+P(X=2,Y=2)+P(X=3,Y=3)=P(X=0)P(Y=0)+P(X=1)P(Y=1)+P(X=2)P(Y=2)+P(X=3)P(Y=3)=(0.4)3×(0.3)3+[])3.0(7.0[])4.0(6.0213213CC3223223)6.0(]3.)7.0([]4.0)6.0([CC321.0)7.0(3(2)甲比乙投中次数多的概率。P(XY)=P(X=1,Y=0)+P(X=2,Y=0)+P(X=2,Y=1)+P(X=3)P(Y=0)+P(X=3)P(Y=1)+P(X=3)P(Y=2)=P(X=1)P(Y=0)+P(X=2,Y=0)+P(X=2,Y=1)+P(X=3)P(Y=0)+P(X=3)P(Y=1)+P(X=3)P(Y=2)4=82233213)3.0(]4.0)6.0([)3.0(])4.0(6.0[CC3213223)6.0(])3.0(7.0[]4.0)6.0([CC321333)6.0(])3.0(7.0[)6.0()3.0(C243.0]3.0)7.0([223C9、有一大批产品,其验收方案如下,先做第一次检验:从中任取10件,经验收无次品接受这批产品,次品数大于2拒收;否则作第二次检验,其做法是从中再任取5件,仅当5件中无次品时接受这批产品,若产品的次品率为10%,求(1)这批产品经第一次检验就能接受的概率(2)需作第二次检验的概率(3)这批产品按第2次检验的标准被接受的概率(4)这批产品在第1次检验未能做决定且第二次检验时被通过的概率(5)这批产品被接受的概率解:X表示10件中次品的个数,Y表示5件中次品的个数,由于产品总数很大,故X~B(10,0.1),Y~B(5,0.1)(近似服从)(1)P{X=0}=0.910≈0.349(2)P{X≤2}=P{X=2}+P{X=1}=581.09.01.09.01.0911082210CC(3)P{Y=0}=0.95≈0.590(4)P{0X≤2,Y=0}({0X≤2}与{Y=2}独立)=P{0X≤2}P{Y=0}=0.581×0.5900.343(5)P{X=0}+P{0X≤2,Y=0}≈0.349+0.343=0.69210、有甲、乙两种味道和颜色极为相似的名酒各4杯。如果从中挑4杯,能将甲种酒全部挑出来,算是试验成功一次。(1)某人随机地去猜,问他试验成功一次的概率是多少?(2)某人声称他通过品尝能区分两种酒。他连续试验10次,成功3次。试问他是猜对的,还是他确有区分的能力(设各次试验是相互独立的。)解:(1)P(一次成功)=701148C(2)P(连续试验10次,成功3次)=100003)7069()701(73310C。此概率太小,按实际推断原理,就认为他确有区分能力。11.尽管在几何教科书中已经讲过用圆规和直尺三等分一个任意角是不可能的。但每年总有一些“发明者”撰写关于用圆规和直尺将角三等分的文章。设某地区每年撰写此类文章的篇数X服从参数为6的泊松分布。求明年没有此类文章的概率。解:.6~X60025.01066eeXP12.一电话交换台每分钟收到呼唤的次数服从参数为4的泊松分布。求(1)每分钟恰有8次呼唤的概率。(2)某一分钟的呼唤次数大于3的概率。54~X4(1)899484!!8rrrereXP029771.0021363.0051134.0(2)566530.0}4{}3{XPXP13.某一公安局在长度为t的时间间隔内收到的紧急呼救的次数X服从参数为(1/2)t的泊松分布,而与时间间隔的起点无关(时间以小时计)。(1)求某一天中午12时至下午3时没有收到紧急呼救的概率。(2)求某一天中午12时至下午5时至少收到1次紧急呼救的概率。解:2tX①323200.2231PXe②522.512.510.918!kkePXk14、解:~(2)Xt(1)、10t分钟时16t小时,131310.2388!1keePXk(2)、00.5PX故0220.50.346571ttet(小时)所以0.34657*6020.79t(分钟)15、解:10500005000100.001510.0015100.8622kkkPXkPX16、解:011000,0.0001,0.12101110.99530.00470!1!npnpPXPXPXee17、解:设X服从01分布,其分布率为11,0,1kkPXkppk,求X的分布函数,并作出其图形。解一:X016kp1pp0,1XX的分布函数为:0010111xFxpxx18.在区间0,a上任意投掷一个质点,以X表示这个质点的坐标。设这个质点落在0,a中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数。解:①当0X时。Xx是不可能事件,0FXPXx②当0xa时,0PXxkx而0Xa是必然事件101PXxkaka0xPXxkxa则00xFxPXxPXPXxa③当xa时,Xx是必然事件,有1FxPXx0001xxFxxaaxa19、以X表示某商店从早晨开始营业起直到第一顾客到达的等待时间(以分计),X的分布函数是000,1)(4.0xxexFxX7求下述概率:(1)P{至多3分钟};(2)P{至少4分钟};(3)P{3分钟至4分钟之间};(4)P{至多3分钟或至少4分钟};(5)P{恰好2.5分钟}解:(1)P{至多3分钟}=P{X≤3

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功