2018年旋转培优练习卷一、选择题:1、观察下列图形,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个2、在直角坐标系中,点(﹣2,1)关于原点的对称点是()A.(﹣1,2)B.(1,2)C.(﹣2,﹣1)D.(2,﹣1)3、将正六边形绕其对称中心旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是()A.120°B.60°C.45°D.30°4、在平面直角坐标系中,把点P(-5,3)向右平移8个单位得到点P1,再将点P1绕原点旋转90°得到点P2,则点P2的坐标是()A.(3,-3)B.(-3,3)C.(3,3)或(-3,-3)D.(3,-3)或(-3,3)5、从5点15分到5点20分,分针旋转的度数为()A.20°B.26°C.30°D.36°6、如图,直线a与直线b被直线c所截,b⊥c,垂足为点A,∠1=70°.若使直线b与直线a平行,则可将直线b绕着点A顺时针旋转()A.20°B.30°C.50°D.70°7、如图,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,将△ABC旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于()A.70°B.80°C.60°D.50°8、如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°9、如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为()A.B.C.D.10、如图,已知在□ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为()A.130°B.150°C.160°D.170°11、如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②△EFP是等腰直角三角形;③S四边形AEPF=S△ABC;④当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),BE+CF=EF,上述结论中始终正确的有()A.1个B.2个C.3个D.4个12、如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A.4B.3C.2D.1二、填空题:13、已知点P(a-3,2b+4)与点Q(b+5,3a-7)关于原点对称,则a+b=.14、若点P(m,﹣2)与点Q(3,n)关于原点对称,则(m+n)2015=.15、如图,△ABC中,∠ACB=90°,∠ABC=25°,以点C为旋转中心顺时针旋转后得到△A′B′C,且点A在边A′B′上,则旋转角的度数为.16、如图,直线y=﹣2x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是.17、△ABC中,∠ABC=∠ACB,将△ABC绕点C顺时针旋转到△EDC,使点B的对应点D落在AC边上,若∠DEB=30°,∠BEC=18°,则∠ABE=度.18、如图,Rt△ABC中,已知∠C=90°,∠B=55°,点D在边BC上,BD=2CD.把线段BD绕着点D逆时针旋转α(0<α<180)度后,如果点B恰好落在Rt△ABC的边上,那么α=.三、作图题:19、△ABC在方格中的位置如图所示.(1)请在方格纸上建立平面直角坐标系,使得A、B两点的坐标分别为A(2,﹣1)、B(1,﹣4).并求出C点的坐标;(2)作出△ABC关于横轴对称的△,再作出△ABC以坐标原点为旋转中心、旋转180°后的△A2B2C2,并写出C1,C2两点的坐标.四、解答题:20、如图,四边形ABCD是正方形,△ADF按顺时针方向旋转一定角度后得到△ABE,若AF=4.AB=7.(1)旋转中心为;旋转角度为;(2)求DE的长度;(3)指出BE与DF的关系如何?并说明理由.21、如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:∠AEB=∠ADC;(2)连接DE,若∠ADC=105°,求∠BED的度数.22、四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)试判断△AEF的形状,并说明理由;(2)填空:△ABF可以由△ADE绕旋转中心点,按顺时针方向旋转度得到;(3)若BC=8,则四边形AECF的面积为.(直接写结果)23、如图①,△ABC是等边三角形,DE∥BC,分别交AB、AC于点D、E.(1)求证:△ADE是等边三角形;(2)如图②,将△ADE绕着点A逆时针旋转适当的角度,使点B在ED的延长线上,连接CE,判断∠BEC的度数及线段AE、BE、CE之间的数量关系,并说明理由.24、如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.25、已知,在等边△ABC中,AB=2,D,E分别是AB,BC的中点(如图1).若将△BDE绕点B逆时针旋转,得到△BD1E1,设旋转角为α(0°<α<180°),记射线CE1与AD1的交点为P.(1)判断△BDE的形状;(2)在图2中补全图形,①猜想在旋转过程中,线段CE1与AD1的数量关系并证明;②求∠APC的度数;(3)点P到BC所在直线的距离的最大值为.(直接填写结果)参考答案1、C2、D3、B.4、A5、C6、A7、B8、B9、B10、C11、C12、B13、-214、答案为:﹣1.15、50°16、答案为:(3,1).17、答案为:36°.18、答案为:70°或120°.19、解:(1)坐标系如图所示,C(3,﹣3);(2)△A1B1C1,△A2B2C2如图所示,C1(3,3),C2(﹣3,3).20、解:(1)旋转中心为点A,旋转角为∠BAD=90°;(2)∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴AE=AF=4,AD=AB=7,∴DE=AD﹣AE=7﹣4=3;(3)BE、DF的关系为:BE=DF,BE⊥DF.理由如下:∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴△ABE≌△ADF,∴BE=DF,∠ABE=∠ADF,∵∠ADF+∠F=180°﹣90°=90°,∴∠ABE+∠F=90°,∴BE⊥DF,∴BE、DF的关系为:BE=DF,BE⊥DF.21、解:(1)∵△ABC是等边三角形,∴∠BAC=60°,AB=AC.∵线段AD绕点A顺时针旋转60°,得到线段AE,∴∠DAE=60°,AE=AD.∴∠BAD+∠EAB=∠BAD+∠DAC.∴∠EAB=∠DAC.在△EAB和△DAC中,∵,∴△EAB≌△DAC.∴∠AEB=∠ADC.(2)如图,∵∠DAE=60°,AE=AD,∴△EAD为等边三角形.∴∠AED=60°,又∵∠AEB=∠ADC=105°.∴∠BED=45°.22、解:(1)△AEF是等腰直角三角形,理由是:∵四边形ABCD是正方形,F是BC延长线上一点,∴AB=AD,∠DAB=∠ABF=∠D=90°,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS)∴AE=AF,∠DAE=∠FAB,∵∠DAB=∠DAE+∠BAE=90°,∴∠FAE=∠DAB=90°,即△AEF是等腰直角三角形.(2)△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90°得到的,故答案为:A,90.(3)∵△ADE≌△ABF,∴SADE=S△ABF,∴四边形AECF的面积S=S四边形ABCE+S△ABF=S四边形ABCE+S△ADE=S正方形ABCD=8×8=64,故答案为:64.23、(1)证明:∵△ABC是等边三角形,∴∠A=∠B=∠C,∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠A=∠ADE=∠AED,∴△ADE是等边三角形.∵△ABC是等边三角形;(2)解:AE+CE=BE;理由如下:∵AB=AC,AD=AE,∠BAD=60°﹣∠DAC=∠CAE,由旋转的性质得:△ABD≌△ACE,∴AD=AE,∵∠DAE=∠CAE+∠DAC=∠BAD+∠DAC=∠BAC=60°,∴△ADE是等边三角形,∴AE=DE,∴AE+CE=DE+BD=BE.24、(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,同理可求∠BOG′=30°,∴α=180°﹣30°=150°.综上所述,当∠OAG′=90°时,α=30°或150°.②如图3,当旋转到A、O、F′在一条直线上时,AF′的长最大,∵正方形ABCD的边长为1,∴OA=OD=OC=OB=,∵OG=2OD,∴OG′=OG=,∴OF′=2,∴AF′=AO+OF′=,∵∠COE′=45°,∴此时α=315°.25、解:(1)∵D,E分别是AB,BC的中点,∴DE=BC,BD=BA,∵△ABC为等边三角形,∴∠B=60°,BA=BC,∴BD=BE,∴△BDE为等边三角形;(2)①CE1=AD1.理由如下:∵△BDE绕点B逆时针旋转,得到△BD1E1,∴△BD1E1为等边三角形,∴BD1=BE1,∠D1BE1=60°,而∠ABC=60°,∴∠ABD1=∠CBE1,∴△ABD1可由△CBE1绕点B逆时针旋转得到,∴CE1=AD1;②∵△ABD1可由△CBE1绕点B逆时针旋转得到,∴∠BAD1=∠BCE1,∴∠APC=∠ABC=60°;(3)∵∠APC=∠D1BE1=60°,∴点P、D1、B、E1共圆,∴当BP⊥BC时,点P到BC所在直线的距离的最大值,此时点E1在AB上,在Rt△PBC中,PB=AB=×2=2,∴点P到BC所在直线的距离的最大值为2.故答案为2.您好,欢迎您阅读我的文章,本WORD文档可编辑修改,也可以直接打印。阅读过后,希望您提出保贵的意见或建议。阅读和学习是一种非常好的习惯,坚持下去,让我们共同进步。