实验四IIR数字滤波器设计及软件实现10.4.1实验指导1.实验目的(1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法;(2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。(3)掌握IIR数字滤波器的MATLAB实现方法。(3)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。2.实验原理设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。第六章介绍的滤波器设计函数butter、cheby1、cheby2和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。本实验要求读者调用如上函数直接设计IIR数字滤波器。本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。3.实验内容及步骤(1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图10.4.1所示。由图可见,三路信号时域混叠无法在时域分离。但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。图10.4.1三路调幅信号st的时域波形和幅频特性曲线(2)要求将st中三路调幅信号分离,通过观察st的幅频特性曲线,分别确定可以分离st中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为60dB。提示:抑制载波单频调幅信号的数学表示式为其中,称为载波,fc为载波频率,称为单频调制信号,f0为调制正弦波信号频率,且满足。由上式可见,所谓抑制载波单频调幅信号,就是2个正弦信号相乘,它有2个频率成分:和频和差频,这2个频率成分关于载波频率fc对称。所以,1路抑制载波单频调幅信号的频谱图是关于载波频率fc对称的2根谱线,其中没有载频成分,故取名为抑制载波单频调幅信号。容易看出,图10.4.1中三路调幅信号的载波频率分别为250Hz、500Hz、1000Hz。如果调制信号m(t)具有带限连续频谱,无直流成分,则就是一般的抑制载波调幅信号。其频谱图是关于载波频率fc对称的2个边带(上下边带),在专业课通信原理中称为双边带抑制载波(DSB-SC)调幅信号,简称双边带(DSB)信号。如果调制信号m(t)有直流成分,则就是一般的双边带调幅信号。其频谱图是关于载波频率fc对称的2个边带(上下边带),并包含载频成分。(3)编程序调用MATLAB滤波器设计函数ellipord和ellip分别设计这三个椭圆滤波器,并绘图显示其幅频响应特性曲线。(4)调用滤波器实现函数filter,用三个滤波器分别对信号产生函数mstg产生的信号st进行滤波,分离出st中的三路不同载波频率的调幅信号y1(n)、y2(n)和y3(n),并绘图显示y1(n)、y2(n)和y3(n)的时域波形,观察分离效果。4.信号产生函数mstg清单functionst=mstg%产生信号序列向量st,并显示st的时域波形和频谱%st=mstg返回三路调幅信号相加形成的混合信号,长度N=1600N=1600%N为信号st的长度。Fs=10000;T=1/Fs;Tp=N*T;%采样频率Fs=10kHz,Tp为采样时间t=0:T:(N-1)*T;k=0:N-1;f=k/Tp;fc1=Fs/10;%第1路调幅信号的载波频率fc1=1000Hz,fm1=fc1/10;%第1路调幅信号的调制信号频率fm1=100Hzfc2=Fs/20;%第2路调幅信号的载波频率fc2=500Hzfm2=fc2/10;%第2路调幅信号的调制信号频率fm2=50Hzfc3=Fs/40;%第3路调幅信号的载波频率fc3=250Hz,fm3=fc3/10;%第3路调幅信号的调制信号频率fm3=25Hzxt1=cos(2*pi*fm1*t).*cos(2*pi*fc1*t);%产生第1路调幅信号xt2=cos(2*pi*fm2*t).*cos(2*pi*fc2*t);%产生第2路调幅信号xt3=cos(2*pi*fm3*t).*cos(2*pi*fc3*t);%产生第3路调幅信号st=xt1+xt2+xt3;%三路调幅信号相加fxt=fft(st,N);%计算信号st的频谱%====以下为绘图部分,绘制st的时域波形和幅频特性曲线====================subplot(3,1,1)plot(t,st);grid;xlabel('t/s');ylabel('s(t)');axis([0,Tp/8,min(st),max(st)]);title('(a)s(t)的波形')subplot(3,1,2)stem(f,abs(fxt)/max(abs(fxt)),'.');grid;title('(b)s(t)的频谱')axis([0,Fs/5,0,1.2]);xlabel('f/Hz');ylabel('幅度')5.实验程序框图如图10.4.2所示,供读者参考。调用函数mstg产生st,自动绘图显示st的时域波形和幅频特性曲线调用ellipord和ellip分别设计三个椭圆滤波器,并绘图显示其幅频响应特性曲线。调用filter,用三个滤波器分别对信号st进行滤波,分离出三路不同载波频率的调幅信号y1(n)、y2(n)和y3(n)绘图显示y1(n)、y2(n)和y3(n)的时域波形和幅频特性曲线End图10.4.2实验4程序框图6.思考题(1)请阅读信号产生函数mstg,确定三路调幅信号的载波频率和调制信号频率。(2)信号产生函数mstg中采样点数N=800,对st进行N点FFT可以得到6根理想谱线。如果取N=1000,可否得到6根理想谱线?为什么?N=2000呢?请改变函数mstg中采样点数N的值,观察频谱图验证您的判断是否正确。(3)修改信号产生函数mstg,给每路调幅信号加入载波成分,产生调幅(AM)信号,重复本实验,观察AM信号与抑制载波调幅信号的时域波形及其频谱的差别。提示:AM信号表示式:。7.实验报告要求(1)简述实验目的及原理。(2)画出实验主程序框图,打印程序清单。(3)绘制三个分离滤波器的损耗函数曲线。(4)绘制经过滤波分理出的三路调幅信号的时域波形。(5)简要回答思考题。===========================================================================================4.信号产生函数mstg清单functionst=mstg%产生信号序列向量st,并显示st的时域波形和频谱%st=mstg返回三路调幅信号相加形成的混合信号,长度N=1600N=1600%N为信号st的长度。Fs=10000;T=1/Fs;Tp=N*T;%采样频率Fs=10kHz,Tp为采样时间t=0:T:(N-1)*T;k=0:N-1;f=k/Tp;fc1=Fs/10;%第1路调幅信号的载波频率fc1=1000Hz,fm1=fc1/10;%第1路调幅信号的调制信号频率fm1=100Hzfc2=Fs/20;%第2路调幅信号的载波频率fc2=500Hzfm2=fc2/10;%第2路调幅信号的调制信号频率fm2=50Hzfc3=Fs/40;%第3路调幅信号的载波频率fc3=250Hz,fm3=fc3/10;%第3路调幅信号的调制信号频率fm3=25Hzxt1=cos(2*pi*fm1*t).*cos(2*pi*fc1*t);%产生第1路调幅信号xt2=cos(2*pi*fm2*t).*cos(2*pi*fc2*t);%产生第2路调幅信号xt3=cos(2*pi*fm3*t).*cos(2*pi*fc3*t);%产生第3路调幅信号st=xt1+xt2+xt3;%三路调幅信号相加fxt=fft(st,N);%计算信号st的频谱%====以下为绘图部分,绘制st的时域波形和幅频特性曲线====================subplot(3,1,1)plot(t,st);grid;xlabel('t/s');ylabel('s(t)');axis([0,Tp/8,min(st),max(st)]);title('(a)s(t)的波形')subplot(3,1,2)stem(f,abs(fxt)/max(abs(fxt)),'.');grid;title('(b)s(t)的频谱')axis([0,Fs/5,0,1.2]);xlabel('f/Hz');ylabel('幅度')(1)请阅读信号产生函数mstg,确定三路调幅信号的载波频率和调制信号频率。(2)信号产生函数mstg中采样点数N=800,对st进行N点FFT可以得到6根理想谱线。如果取N=1000,可否得到6根理想谱线?为什么?N=2000呢?请改变函数mstg中采样点数N的值,观察频谱图验证您的判断是否正确。(3)修改信号产生函数mstg,给每路调幅信号加入载波成分,产生调幅(AM)信号,重复本实验,观察AM信号与抑制载波调幅信号的时域波形及其频谱的差别。提示:AM信号表示式: