受弯构件正截面承载力答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1/14第五章钢筋混凝土受弯构件正截面承载力计算一、填空题:1、钢筋混凝土受弯构件,随配筋率的变化,可能出现少筋、超筋和适筋等三种沿正截面的破坏形态.2、受弯构件梁的最小配筋率应取%2.0min和ytff/45min较大者.3、钢筋混凝土矩形截面梁截面受弯承载力复核时,混凝土相对受压区高度b,说明该梁为超筋梁.4.受弯构件min是为了____防止产生少筋破坏_______________;max是为了___防止产生超筋破坏_.5.第一种T形截面梁的适用条件及第二种T形截面梁的试用条件中,不必验算的条件分别是____b___及__min_______.6.T形截面连续梁,跨中按T形截面,而支座边按矩形截面计算.7、混凝土受弯构件的受力过程可分三个阶段,承载力计算以Ⅲa阶段为依据,抗裂计算以Ⅰa阶段为依据,变形和裂缝计算以Ⅱ阶段为依据.8、对钢筋混凝土双筋梁进行截面设计时,如sA与'sA都未知,计算时引入的补充条件为b.二、判断题:1、界限相对受压区高度b由钢筋的强度等级决定.(∨)2、混凝土保护层的厚度是从受力纵筋外侧算起的.(∨)3、在适筋梁中增大梁的截面高度h对提高受弯构件正截面承载力的作用很大.(∨)4、在适筋梁中,其他条件不变的情况下,越大,受弯构件正截面的承载力越大.(∨)5.梁中有计算受压筋时,应设封闭箍筋(√)6.fhx的T形截面梁,因为其正截面抗弯强度相当于宽度为fb的矩形截面,所以配筋率也用fb来表示,即0/hbAfs()0/bhAs7.在适筋范围内的钢筋混凝土受弯构件中,提高混凝土标号对于提高正截面抗弯强度的作用不是很明显的(√)三、选择题:1、受弯构件正截面承载力计算采用等效矩形应力图形,其确定原则为(A).A保证压应力合力的大小和作用点位置不变B矩形面积等于曲线围成的面积C由平截面假定确定08.0xxD两种应力图形的重心重合2、钢筋混凝土受弯构件纵向受拉钢筋屈服与受压混凝土边缘达到极限压应变同时发生的破坏属于(C).A适筋破坏B超筋破坏C界限破坏D少筋破坏3、正截面承载力计算中,不考虑受拉混凝土作用是因为(B).2/14A中和轴以下混凝土全部开裂B混凝土抗拉强度低C中和轴附近部分受拉混凝土范围小且产生的力矩很小D混凝土退出工作4、对于钢筋混凝土双筋矩形截面梁正截面承载力计算,要求满足sax2,此要求的目的是为了(A).A保证构件截面破坏时受压钢筋能够达到屈服强度B防止梁发生少筋破坏C减少受拉钢筋的用量D充分发挥混凝土的受压作用5、钢筋混凝土矩形截面梁截面受弯承载力复核时,混凝土相对受压区高度b,说明(D).A少筋梁B适筋梁C受压筋配的过多D超筋梁6、对于钢筋混凝土双筋矩形截面梁正截面承载力计算,当sax2时,说明(A).A受压钢筋过多B截面破坏时受压钢筋早已屈服C受压钢筋过少D混凝土截面尺寸不足7、设计双筋梁时,当求sA和sA时,用钢量接近最少的方法是(A).A取bBsA=sACsax2D05.0hx8、设计钢筋混凝土T形截面梁,当满足条件(B)时,可判别为第二类T形截面.A)2(01fffchhhbfMB)2(01fffchhhbfMCffcsyhbfAf1DffcsyhbfAf19、图5-1中的四种截面,当材料强度、截面宽度B和截面高度h、所配纵向受力筋均相同时,其能承受的弯矩(忽略自重的影响)下列说明正确的是(D).(a)(b)(c)(d)图5-1选择题9附图A(a)=(b)=(c)=(d)B(a)=(b)(c)=(d)C(a)(b)(c)(d)D(a)=(b)(c)=(d)10.适筋梁从加载到破坏可分三个阶段,试填充:①抗裂计算以B阶段为基础②使用阶段裂缝宽度和挠度计算以C为基础.③承载能力计算以F阶段为依据.A.(Ⅰ)(B)(Ⅰa)C.(Ⅱ)D.(Ⅱa)(E)(Ⅲ)(F)(Ⅲa)11.正截面强度计算中不考虑受拉混凝土的作用,因为:CA.中和轴以下,混凝土全部开裂B.混凝土抗拉强度低C.中和轴附近部分受拉混凝土应力承担的力矩很小3/1412.截面尺寸和材料品种确定后,受弯构件正截面抗弯强度与受拉区纵向钢筋配筋率之间的关系是(B)A.愈大,正截面抗弯强度也愈大.B.当满足条件maxmin时,愈大,正截面抗弯强度也愈大.13.梁的正截面破坏形式有适筋梁破坏、超筋梁破坏、少筋梁破坏,他们的破坏性质是(D)A.都属于塑性破坏B.都属于脆性破坏C.适筋梁、超筋梁属于脆性破坏,少筋梁属于塑性破坏D.适筋梁属于塑性破坏,超筋梁、少筋梁属于脆性破坏14.适筋梁的受弯破坏是(B)A.受拉钢筋屈服前,混凝土压碎引起的破坏B.受拉钢筋屈服,随后受压混凝土达到极限压应变C.破坏前梁的挠度和裂缝宽度不超过设计限值D.受拉钢筋屈服恰好与混凝土压碎同时发生四、简答题:1.计算T形截面的最小配筋率时,为什么是用梁肋宽度b而不用受压翼缘宽度bf?答:最小配筋率从理论上是由Mu=Mcy确定的,主要取决于受拉区的形状,所以计算T形截面的最小配筋率时,用梁肋宽度b而不用受压翼缘宽度bf.2.受弯构件适筋梁从开始加荷至破坏,经历了哪几个阶段?各阶段的主要特征是什么?各个阶段是哪种极限状态的计算依据?答:适筋受弯构件正截面工作分为三个阶段.第Ⅰ阶段荷载较小,梁基本上处于弹性工作阶段,随着荷载增加,弯矩加大,拉区边缘纤维混凝土表现出一定塑性性质.第Ⅱ阶段弯矩超过开裂弯矩Mcrsh,梁出现裂缝,裂缝截面的混凝土退出工作,拉力由纵向受拉钢筋承担,随着弯矩的增加,受压区混凝土也表现出塑性性质,当梁处于第Ⅱ阶段末Ⅱa时,受拉钢筋开始屈服.第Ⅲ阶段钢筋屈服后,梁的刚度迅速下降,挠度急剧增大,中和轴不断上升,受压区高度不断减小.受拉钢筋应力不再增加,经过一个塑性转动构成,压区混凝土被压碎,构件丧失承载力.第Ⅰ阶段末的极限状态可作为其抗裂度计算的依据.第Ⅱ阶段可作为构件在使用阶段裂缝宽度和挠度计算的依据.第Ⅲ阶段末的极限状态可作为受弯构件正截面承载能力计算的依据.3.什么叫纵向受拉钢筋的配筋率?钢筋混凝土受弯构件正截面有哪几种破坏形式?其破坏特征有何不同?答:配筋率是钢筋混凝土构件中纵向受力钢筋的面积与构件的有效面积之比(轴心受压构件为全截面的面积).%1000bhAs,ρ为配筋率;As为受拉区纵向钢筋的截面面积;b为矩形截面的宽度;h0为截面的有效高度.钢筋混凝土受弯构件正截面有适筋破坏、超筋破坏、少筋破坏.梁配筋适中会发生适筋破坏.受拉钢筋首先屈服,钢筋应力保持不变而产生显著的塑性伸长,受压区边缘混凝土的应变达到极限压应变,混凝土压碎,构件破坏.梁破坏前,挠度较大,产生较大的塑性变形,有4/14明显的破坏预兆,属于塑性破坏.梁配筋过多会发生超筋破坏.破坏时压区混凝土被压坏,而拉区钢筋应力尚未达到屈服强度.破坏前梁的挠度及截面曲率曲线没有明显的转折点,拉区的裂缝宽度较小,破坏是突然的,没有明显预兆,属于脆性破坏,称为超筋破坏.梁配筋过少会发生少筋破坏.拉区混凝土一旦开裂,受拉钢筋即达到屈服,并迅速经历整个流幅而进入强化阶段,梁即断裂,破坏很突然,无明显预兆,故属于脆性破坏.4.什么是延性的概念?受弯构件破坏形态和延性的关系如何?影响受弯构件截面延性的因素有那些?如何提高受弯构件截面延性?答:延性是指组成结构的材料、组成结构的构件以及结构本身能维持承载能力而又具有较大塑性变形的能力.因此延性又包括材料的延性、构件的延性以及结构的延性.适筋破坏是延性破坏,超筋破坏、少筋破坏是脆性破坏.在单调荷载下的受弯构件,延性主要取决于两个综合因素,即极限压应变εcu以及受压区高度x.影响受弯构件截面延性的因素包括,如混凝土强度等级和钢筋级别、受拉钢筋配筋率、受压钢筋配筋率、混凝土极限压应变、箍筋直径和间距、截面形式等.在设计混凝土受弯构件时,承载力问题与延性问题同样重要.主要措施是:1)抗震设计时,限制纵向受拉钢筋的配筋率,一般不应大于2.5%;受压区高度x≤(0.25~0.35)h0;2)双筋截面中,规定受压钢筋和受拉钢筋的最小比例,一般使受压钢筋与受拉钢筋面积之比保持为0.3~0.5;在弯矩较大的区段适当加密箍筋.5、设计中应如何避免发生少筋破坏和超筋破坏?答:(1)为防止超筋破坏,应满足:b或0hxb或max,ss(2)防止少筋破坏,应满足:min0bhAs或bhAsmin6、什么叫等效应力图形?等效后的应力图形应满足哪两点要求?绘图表示.答:从试验分析知,受弯构件正截面承载力计算是以适筋梁的Ⅲe阶段的应力状态为依据,此时,压区混凝土应力图形为曲线型,为便于计算,以等效矩形应力图形来代替压区混凝土实际应力图形.等效后的应力图形应满足:(1)混凝土压力合力C的作用位置不变;(2)混凝土压力合力C的作用点不变.如图5-2所示.图5-2单筋矩形截面受压区混凝土的等效应力图7、什么叫受压区混凝土的相对高度?什么叫相对界线受压区高度b?与哪些因素有关?当混凝土强度等级50C时,HPB235,HRB335,HRB400钢筋b的值各为多少?答:是指压区混凝土的高度x与截面有效高度0h的比值,即:0hx5/14界限相对受压区高度b:是指在适筋梁的界限破坏时,等效压区混凝土的bx与截面有效高度0h的比值,即:0hxbb.(1)b不仅与钢筋级别有关,还与混凝土强度等级有关.(2)HPB235:b=0.614;HRB335:b=0.550;HRB400:b=0.518.8、进行单筋矩形受弯构件承载力计算时,引入了哪些基本假设?答:(1)截面应变保持平面;(2)不考虑混凝土抗拉强度(拉区混凝土不参与工作);(3)混凝土、钢筋的应力应变曲线按理想化的图形取值;9、单筋矩形截面梁承载力基本公式的建立必须满足哪两个条件?为什么?答:(1)为防止超筋破坏,应满足:b或0hxb或max,ss(2)防止少筋破坏,应满足:min0bhAs或bhAsmin10、在进行受弯构件截面设计时,当maxss或b时,可采取什么措施解决此问题?答:(1)增加梁的截面高度;(2)提高混凝土的强度等级;(3)采用双筋截面梁.11、双筋矩形截面梁承载力基本公式的建立必须满足哪两个条件?为什么?答:(1)b或0hxb或max,ss:防止超筋破坏;(2)sax2:保证受压筋sA在构件破坏时应力达到抗压强度yf(屈服).12、进行双筋矩形截面梁正截面设计中引进第三个条件是什么?是基于什么考虑的?答:引进条件是:b,max,ss,应考虑充分发挥混凝土的抗压能力,使总用钢量最少.13、对图5-3所示的梁截面尺寸相同、配筋量不同的四种情况,回答下列问题:(1)各截面破坏性质.(2)破坏时钢筋应力大小?(3)破坏时钢筋和混凝土强度是否得到充分利用?(4)受压区高度大小是多少?(5)开裂弯矩大致相等吗?为什么?(6)破坏时截面的极限弯知矩uM为多大?6/14(a)min(b)maxmin(c)max(d)max图5-3简答题13附图答:(1)(a)截面为少筋梁,呈脆性破坏性质;(b)截面为适筋梁,呈塑性破坏性质;(c)截面为界限破坏,呈塑性;(d)截面为超筋梁,呈脆性破坏性质.(2)(a)ysf;(b)ysf;(c)ysf;(d)ysf.(3)钢筋:(a)(b)(c)被充分利用;(d)未被充分利用.混凝土:(b)(c)(d)被充分利用;(a)未被充分利用.(4)(a)无;(b)010hffhxcy;(c)0hxb;(d)0hxb.(5)开裂弯矩大致相等,混凝土抗拉强度较低,在纵向受拉钢筋应力很小时,混凝土即开裂,与大小基本无关,只受混凝土强度等级控制.(6)(a)2292.0bhfMtu;(b))21()2(12001cyycuffbhfxhbxfM

1 / 14
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功