函数教案教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;一、与函数相关的概念(一)函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.注意:○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素:定义域、对应关系和值域3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.一次函数、二次函数、反比例函数的定义域和值域讨论.判断下列函数f(x)与g(x)是否表示同一个函数,说明理由?(1)f(x)=(x-1)0;g(x)=1(2)f(x)=x;g(x)=2x(3)f(x)=x2;f(x)=(x+1)2(4)f(x)=|x|;g(x)=2x(二)课堂练习求下列函数的定义域(1)|x|x1)x(f(2)x111)x(f(3)5x4x)x(f2(4)1xx4)x(f2(5)10x6x)x(f2(6)13xx1)x(f(三)函数的复合型设y是u的函数y=f(u),而u又是x的函数u=g(x),设M表示u=g(x)的值域,N是函数y=f(u)的定义域,当M⊆N,则y成为x的函数,记为y=f[g(x)].这个函数叫做由y=f(u)及u=g(x)复合而成的复合函数,u叫做中间变量,f称为外层函数,g称为内层函数.二、函数的表达方式函数的表达方式:解析法、图像法、列表法(一)解决函数问题【例1】某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元.试用函数的三种表示法表示函数y=f(x).【例2】将长为a的铁丝折成矩形,求矩形面积y关于一边长x的函数关系式,并求定义域和值域,作出函数的图象.【例3】向高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图象如图所示,那么水瓶的形状是()【例4】求下列函数的值域:(1)y=x2-2x(-1≤x≤2);(2)y=x4+1.注意:分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.三、函数的映射1.对于任何一个实数a,数轴上都有唯一的点P和它对应;2.对于坐标平面内任何一个点A,都有唯一的有序实数对(x,y)和它对应;3.对于任意一个三角形,都有唯一确定的面积和它对应;4.函数的概念.新课教学1、函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种的对应就叫映射.2、什么叫做映射?一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射、记作“f:AB”注意:(1)这两个集合有先后顺序,A到B的射与B到A的映射是截然不同的.其中f表示具体的对应法则,可以用汉字叙述.(2)“都有唯一”什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。例题分析:下列哪些对应是从集合A到集合B的映射?(1)A={P|P是数轴上的点},B=R,对应关系f:数轴上的点与它所代表的实数对应;(2)A={P|P是平面直角体系中的点},B={(x,y)|x∈R,y∈R},对应关系f:平面直角体系中的点与它的坐标对应;(3)A={三角形},B={x|x是圆},对应关系f:每一个三角形都对应它的内切圆;四、函数的单调性教学目的:通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;学会运用函数图象理解和研究函数的性质;能够熟练应用定义判断数在某区间上的的单调性.教学难点:利用函数的单调性定义判断、证明函数的单调性.一、引入课题1.观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:○1随x的增大,y的值有什么变化?○2能否看出函数的最大、最小值?○3函数图象是否具有某种对称性?二、新课教学(一)函数单调性定义1.增函数一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在区间D上是增函数.思考:仿照增函数的定义说出减函数的定义.注意:○1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;○2必须是对于区间D内的任意两个自变量x1,x2;当x1x2时,总有f(x1)f(x2).2.函数的单调性定义如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间:3.判断函数单调性的方法步骤利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:○1任取x1,x2∈D,且x1x2;○2作差f(x1)-f(x2);○3变形(通常是因式分解和配方);○4定号(即判断差f(x1)-f(x2)的正负);○5下结论(即指出函数f(x)在给定的区间D上的单调性).提高作业:设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),○1求f(0)、f(1)的值;○2若f(3)=1,求不等式f(x)+f(x-2)1的解集.五、函数的奇偶性教学目的:(1)理解函数的奇偶性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;(3)学会判断函数的奇偶性.教学重点:函数的奇偶性及其几何意义.一、新课教学(一)函数的奇偶性定义图象关于y轴对称的函数即是偶函数,图象关于原点对称的函数即是奇函数.yx1-11-1yx1-11-1yx1-11-11.偶函数:对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.2.奇函数:对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.注意:○1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;○2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).(二)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.(三)典型例题1.判断函数的奇偶性:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.3.函数的奇偶性与单调性的关系例1.已知f(x)是奇函数,在(0,+∞)上是增函数,证明:f(x)在(-∞,0)上也是增函数规律:偶函数在关于原点对称的区间上单调性相反;奇函数在关于原点对称的区间上单调性一致.作业:判断下列函数的奇偶性:○1122)(2xxxxf;○2xxxf2)(3;○3axf)((Rx)○4)1()1()(xxxxxf.0,0xx思考:已知)(xf是定义在R上的函数,设2)()()(xfxfxg,2)()()(xfxfxh○1试判断)()(xhxg与的奇偶性;○2试判断)()(),(xfxhxg与的关系;○3由此你能猜想得出什么样的结论,并说明理由.六、函数的最值问题教学重点:函数的最大(小)值及其几何意义.教学难点:利用函数的单调性求函数的最大(小)值.利用函数的单调性判断函数的最值问题一、新课教学(一)函数最大(小)值定义1.最大值一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M那么,称M是函数y=f(x)的最大值.注意:○1函数最大(小)首先应该是某一个函数值,即存在x0∈I,使得f(x0)=M;○2函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x∈I,都有f(x)≤M(f(x)≥M).2.利用函数单调性的判断函数的最大(小)值的方法○1利用二次函数的性质(配方法)求函数的最大(小)值○2利用图象求函数的最大(小)值○3利用函数单调性的判断函数的最大(小)值如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);(二)典型例题求函数12xy在区间[2,6]上的最大值和最小值.七、方程的根和函数的零点一元二次方程及其相应的二次函数①方程x2-2x-3=0的解为,函数y=x2-2x-3的图象与x轴有个交点,坐标为.②方程x2-2x+1=0的解为,函数y=x2-2x+1的图象与x轴有个交点,坐标为.根据以上观察结果,可以得到:结论:一元二次方程的根就是相应的二次函数图象与x轴交点的.若一元二次方程无实数根,则相应的二次函数图象与x轴无交点.函数零点的概念:对于函数))((Dxxfy,把使0)(xf成立的实数x叫做函数))((Dxxfy的零点.函数零点的意义:函数)(xfy的零点就是方程0)(xf实数根,亦即函数)(xfy的图象与x轴交点的横坐标.即:方程0)(xf有实数根函数)(xfy的图象与x轴有交点函数)(xfy有零点.函数零点的求法:求函数)(xfy的零点:○1(代数法)求方程0)(xf的实数根;○2(几何法)对于不能用求根公式的方程,可以将它与函数)(xfy的图象联系起来,并利用函数的性质找出零点二次函数的零点:二次函数:)0(2acbxaxy.(1)△>0,方程02cbxax有两不等实根,二次函数的图象与x轴有两个交点,二次函数有两个零点.(2)△=0,方程02cbxax有两相等实根(二重根),二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程02cbxax无实根,二次函数的图象与x轴无交点,二次函数无零点.1.利用函数图象判断下列方程有没有根,有几个根:(1)0532xx;(2)3)2(2xx;(3)442xx;(4)532522xxx.2.利用函数的图象,指出下列函数零点所在的大致区间:(1)53)(3xxxf;(2)3)2ln(2)(xxxf;(3)44)(1xexfx;(4)xxxxxf)4)(3)(2(3)(3.当Ra时,函数)(xf的零点是怎样分布的?(1)研究cbxaxy2,02cbxax,(2)02cbxax,02cbxax的相互关系,以零点作为研究出发点,并将研究结果尝试用一种系统的、简洁的方式总结表达.函数二分法及步骤:对于在区间a[,]b上连续不断,且满足)(af·)(bf0的函数)(xfy,通过不断地把函数)(xf的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.给定精