万洪文《物理化学》教材习题解答

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1第一篇化学热力学第一章热力学基本定律.1-10.1kgC6H6(l)在,沸点353.35K下蒸发,已知(C6H6)=30.80kJmol-1。试计算此过程Q,W,ΔU和ΔH值。解:等温等压相变。n/mol=100/78,ΔH=Q=n=39.5kJ,W=-nRT=-3.77kJ,ΔU=Q+W=35.7kJ1-2设一礼堂的体积是1000m3,室温是290K,气压为p,今欲将温度升至300K,需吸收热量多少?(若将空气视为理想气体,并已知其Cp,m为29.29JK-1·mol-1。)解:理想气体等压升温(n变)。Q=nCp,m△T=(1000p)/(8.314×290)×Cp,m△T=1.2×107J1-32mol单原子理想气体,由600K,1.0MPa对抗恒外压绝热膨胀到。计算该过程的Q、W、ΔU和ΔH。(Cp,m=2.5R)解:理想气体绝热不可逆膨胀Q=0。ΔU=W,即nCV,m(T2-T1)=-p2(V2-V1),因V2=nRT2/p2,V1=nRT1/p1,求出T2=384K。ΔU=W=nCV,m(T2-T1)=-5.39kJ,ΔH=nCp,m(T2-T1)=-8.98kJ1-4在298.15K,6×101.3kPa压力下,1mol单原子理想气体进行绝热膨胀,最后压力为p,若为;(1)可逆膨胀(2)对抗恒外压膨胀,求上述二绝热膨胀过程的气体的最终温度;气体对外界所作的功;气体的热力学能变化及焓变。(已知Cp,m=2.5R)。解:(1)绝热可逆膨胀:γ=5/3,过程方程p11-γT1γ=p21-γT2γ,T2=145.6K,ΔU=W=nCV,m(T2-T1)=-1.9kJ,ΔH=nCp,m(T2-T1)=-3.17kJ(2)对抗恒外压膨胀,利用ΔU=W,即nCV,m(T2-T1)=-p2(V2-V1),求出T2=198.8K。同理,ΔU=W=-1.24kJ,ΔH=-2.07kJ。1-51mol水在100℃,p下变成同温同压下的水蒸气(视水蒸气为理想气体),然后等温可逆膨胀到p,计算全过程的ΔU,ΔH。已知glHm(H2O,373.15K,p)=40.67kJmol-1。解:过程为等温等压可逆相变+理想气体等温可逆膨胀,对后一步ΔU,ΔH均为零。ΔH=Hm=40.67kJ,ΔU=ΔH–Δ(pV)=37.57kJ1-6某高压容器中含有未知气体,可能是氮气或氩气。在29K时取出一样品,从5dm3绝热可逆膨胀到6dm3,温度下降21K。能否判断容器中是何种气体?(若设单原子气体的CV,m=1.5R,双原子气体的CV,m=2.5R)解:绝热可逆膨胀:T2=277K,过程方程T1V1γ-1=T2V2γ-1,求出γ=7/5,容器中是N2.1-71mol单原子理想气体(CV,m=1.5R),温度为273K,体积为22.4dm3,经由A途径变化到温度为546K、体积仍为22.4dm3;再经由B途径变化到温度为546K、体积为44.8dm3;最后经由C途径使系统回到其初态。试求出:(1)各状态下的气体压力;(2)系统经由各途径时的Q,W,ΔU,ΔH值;(3)该循环过程的Q,W,ΔU,ΔH。解:A途径:等容升温,B途径等温膨胀,C途径等压降温。(1)p1=,p2=2,p3=(2)理想气体:ΔU=nCV,mΔT,ΔH=nCp,mΔT.A途径,W=0,Q=ΔU,所以Q,W,ΔU,ΔH分别等于3.40kJ,0,3.40kJ,5.67kJB途径,ΔU=ΔH=0,Q=-W,所以Q,W,ΔU,ΔH分别等于3.15kJ,-3.15kJ,0,0;2C途径,W=-pΔV,Q=ΔU–W,所以Q,W,ΔU,ΔH分别等于-5.67kJ,2.27kJ,-3.40kJ,-5.67kJ(3)循环过程ΔU=ΔH=0,Q=-W=3.40+3.15+(-5.67)=0.88kJ1-82mol某双原子分子理想气体,始态为202.65kPa,11.2dm3,经pT=常数的可逆过程,压缩到终态为405.20kPa.求终态的体积V2温度T2及W,ΔU,ΔH.(Cp,m=3.5R).解:p1T1=p2T2,T1=136.5K求出T2=68.3K,V2=2.8dm3,ΔU=nCV,mΔT=-2.84kJ,ΔH=nCp,mΔT=-3.97kJ,δW=-2nRdT,W=-2nRΔT=2.27kJ1-92mol,101.33kPa,373K的液态水放入一小球中,小球放入373K恒温真空箱中。打破小球,刚好使H2O(l)蒸发为101.33kPa,373K的H2O(g)(视H2O(g)为理想气体)求此过程的Q,W,ΔU,ΔH;,则Q,W,ΔU,ΔH的值各为多少?已知水的蒸发热在373K,101.33kPa时为40.66kJmol-1。.解:101.33kPa,373KH2O(l)→H2O(g)(1)等温等压可逆相变,ΔH=Q=nHm=81.3kJ,W=-nRT=-6.2kJ,,ΔU=Q+W=75.1kJ(2)向真空蒸发W=0,初、终态相同ΔH=81.3kJ,,ΔU=75.1kJ,Q=ΔU=75.1kJ1-10将373K,50650Pa的水蒸气0.300m3等温恒外压压缩到101.325kPa(此时仍全为水气),后继续在101.325kPa恒温压缩到体积为30.0dm3时为止,(此时有一部分水蒸气凝聚成水).试计算此过程的Q,ΔU,ΔH.假设凝聚成水的体积忽略不计,水蒸气可视为理想气体,水的气化热为22.59Jg-1。.解:此过程可以看作:n=4.9mol理想气体等温压缩+n’=3.92mol水蒸气等温等压可逆相变。W=-pΔV+n’RT=27kJ,Q=pΔV+n’Hm=-174kJ,理想气体等温压缩ΔU,ΔH为零,相变过程ΔH=n’Hm=-159kJ,ΔU=ΔH-Δ(pV)=ΔH+n’RT=-147kJ1-11试以T为纵坐标,S为横坐标,画出卡诺循环的T-S图,并证明线条所围的面积就是系统吸的热和数值上等于对环境作的功。1-121mol单原子理想气体,可逆地沿T=aV(a为常数)的途径,自273K升温到573K,求此过程的W,ΔU,ΔS。解:可逆途径T=aV(a为常数)即等压可逆途径W=-nR(T2-T1)=-2.49kJΔU=nCV,mΔT=3.74kJ,ΔS=nCp,mln(T2/T1)=15.40JK-11-131mol理想气体由25℃,1MPa膨胀到0.1MPa,假定过程分别为:(1)等温可逆膨胀;(2)向真空膨胀。计算各过程的熵变。解:(1)等温可逆膨胀;ΔS=nRln(V2/V1)=19.14JK-1(2)初、终态相同ΔS=19.14JK-11-142mol、27℃、20dm3理想气体,在等温条件下膨胀到50dm3,假定过程为:(1)可逆膨胀;(2)自由膨胀;(3)对抗恒外压膨胀。计算以上各过程的Q、W、ΔU、ΔH及ΔS。解:理想气体等温膨胀,ΔU=ΔH=0及ΔS=nRln(V2/V1)=15.2JK-1。(1)可逆膨胀W=-nRTln(V2/V1)=-4.57kJ、Q=-W=4.57kJ(2)自由膨胀W=0,Q=-W=0(3)恒外压膨胀W=-pΔV=-3.0kJ,Q=-W=3.0kJ1-155mol某理想气体(Cp,m=29.10JK-1mol-1),由始态(400K,200kPa)分别经下列不同过程变到该过程所指定的终态。试分别计算各过程的Q、W、ΔU、ΔH及ΔS。(1)等容加热到600K;(2)等压冷却到300K;(3)对抗恒外压绝热膨胀到;(4)绝热可逆膨胀到。解:理想气体ΔU=nCV,mΔT,ΔH=nCp,mΔT,ΔS=nRln(p1/p2)+nCp,mln(T2/T1)(1)等容升温T2=600K,W=0,Q=ΔU,ΔS=nCV,mln(T2/T1)所以Q,W,ΔU,ΔH,ΔS分别等于20.79kJ,0,20.79kJ,29.10kJ,42.15JK-1(2)等压降温T2=300K,W=-pΔV,Q=ΔU–W,ΔS=nCp,mln(T2/T1)所以Q,W,ΔU,ΔH,ΔS分别等于-14.55kJ,4.16kJ,–10.4kJ,–14.55kJ,–41.86JK-13(3)恒外压绝热膨胀Q=0,W=ΔU,T2=342.9K,ΔS=nRln(p1/p2)+nCp,mln(T2/T1)=6.40JK-1(4)绝热可逆膨胀ΔS=0,Q=0,γ=7/5,p1V1γ=p2V2γ,T2=328K所以Q,W,ΔU,ΔH,ΔS分别等于0,–7.47kJ,–7.47kJ,–10.46kJ,01-16汽车发动机(通常为点火式四冲程内燃机)的工作过程可理想化为如下循环过程(Otto循环):(1)利用飞轮的惯性吸入燃料气并进行绝热压缩(2)点火、燃烧,气体在上死点处恒容升温(3)气体绝热膨胀对外做功(4)在下死点处排出气体恒容降温。设绝热指数=1.4、V1/V2=6.0,求该汽车发动机的理论效率。解:①→②绝热可逆压缩②→③恒容V2升温③→④绝热可逆膨胀④→①恒容V1降温②→③Q+=CV(T3-T2),④→①Q-=CV(T1-T4),η=|Q++Q-|/Q+利用绝热可逆过程方程求出η=1-(T2-T3)/(T1-T4)=1-(V1/V2)1-γ=1-6-0.41-171mol水由始态(,沸点372.8K)向真空蒸发变成372.8K,水蒸气。计算该过程的ΔS(已知水在372.8K时的=40.60kJmol-1)解:设计等温等压可逆相变ΔS=/T=109JK-11-18已知水的沸点是100℃,Cp,m(H2O,l)=75.20JK-1mol-1,(H2O)=40.67kJ·mol-1,Cp,m(H2O,g)=33.57JK-1mol-1,Cp,m和均可视为常数。(1)求过程:1molH2O(1,100℃,)→1molH2O(g,100℃,)的ΔS;(2)求过程:1molH2O(1,60℃,)→1molH2O(g,60℃,)的ΔU,ΔH,ΔS。解:(1)等温等压可逆相变ΔS=/T=109JK-1(2)设计等压过程H2O(1,60℃)→H2O(1,100℃)→H2O(g,100℃)→H2O(g,60℃)ΔH=Cp,m(l)ΔT+-Cp,m(g)ΔT=42.34kJ,ΔU=ΔH–pΔV=ΔH–RT=39.57kJΔS=Cp,m(l)ln(T2/T1)+/T+Cp,m(g)ln(T1/T2)=113.7JK-11-194mol理想气体从300K,下等压加热到600K,求此过程的ΔU,ΔH,ΔS,ΔF,ΔG。已知此理想气体的(300K)=150.0JK-1mol-1,Cp,m=30.00JK-1mol-1。解:ΔU=nCV,mΔT=26.0kJ,ΔH=nCp,mΔT=36.0kJ,ΔS=nCp,mln(T2/T1)=83.2JK-1(600K)=(300K)+ΔS=233.2JK-1mol-1ΔF=ΔU-Δ(TS)=-203.9kJ,ΔG=ΔH-Δ(TS)=-193.9kJ1-20将装有0.1mol乙醚液体的微小玻璃泡放入35℃,,10dm3的恒温瓶中,其中已充满N2(g),将小玻璃泡打碎后,乙醚全部气化,形成的混合气体可视为理想气体。已知乙醚在101325Pa时的沸点为35℃,其=25.10kJ·mol-1。计算:(1)混合气体中乙醚的分压;(2)氮气的ΔH,ΔS,ΔG;(3)乙醚的ΔH,ΔS,ΔG。解:(1)p乙醚=nRT/V=25.6kPa(2)该过程中氮气的压力、温度、体积均无变化ΔH,ΔS,ΔG均为零。(3)对乙醚而言可视为:等温等压可逆相变+理想气体等温加压,ΔH=n=2.51kJ,ΔS=n/T-nRln(p2/p1)=9.3JK-1,ΔG=ΔH-TΔS=-0.35kJ1-21某一单位化学反应在等温(298.15K)、等压()下直接进行,放热40kJ,若放在可逆电池中进行则吸热4kJ。(1)计算该反应的ΔrSm;(2)计算直接反应以及在可逆电池中反应的熵产生ΔiS;(3)计算反应的ΔrHm;(4)计算系统对外可能作的最大电功。解:(1)ΔrSm=QR/T=13.42JK-1(

1 / 47
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功