三视图、直观图、表面积和体积

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第八章立体几何第一节空间几何体的三视图、直观图、表面积与体积本节主要包括3个知识点:1.空间几何体的三视图和直观图;2.空间几何体的表面积与体积;3.与球有关的切、接应用问题.空间几何体空间几何体的结构柱、锥、台、球的结构特征简单几何体的结构特征三视图柱、锥、台、球的三视图简单几何体的三视图直观图斜二测画法平面图形空间几何体中心投影柱、锥、台、球的表面积与体积平行投影画图识图柱锥台球圆锥圆台多面体旋转体圆柱棱柱棱锥棱台概念结构特征侧面积体积球概念性质侧面积体积由上述几何体组合在一起形成的几何体称为简单组合体突破点(一)空间几何体的三视图和直观图1.空间几何体的结构特征(1)多面体的结构特征多面体结构特征棱柱有两个面_____,其余各面都是四边形且每相邻两个面的交线都____________棱锥有一个面是多边形,而其余各面都是有一个__________的三角形棱台棱锥被平行于_____的平面所截,截面和底面之间的部分叫做棱台平行平行且相等公共顶点底面棱柱的概念复习ABCDEA’B’C’D’E’·H’H·底底两个互相平行的面叫做棱柱的底其余各面叫做棱柱的侧面两个面的公共边叫做棱柱的棱两个侧面的公共边叫做棱柱的侧棱有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,这些面围成的几何体叫棱柱侧面与底面的公共顶点叫做棱柱的顶点··········不在同一个面上的两个顶点的连线叫做棱柱的对角线·H’H··H’H··H’H··H’H··H’H·1、按侧棱是否和底面垂直分类:棱柱斜棱柱直棱柱正棱柱其它直棱柱2、按底面多边形边数分类:棱柱的分类三棱柱、四棱柱、五棱柱、······四棱柱平行六面体长方体直平行六面体正四棱柱正方体底面变为平行四边形侧棱与底面垂直底面是矩形底面为正方形侧棱与底面边长相等几种六面体的关系:【知识梳理】棱锥1、定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥。如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面中心,这样的棱锥叫做正棱锥。2、性质Ⅰ、正棱锥的性质(1)各侧棱相等,各侧面都是全等的等腰三角形。(2)棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。正棱锥性质2棱锥的高、斜高和斜高在底面的射影组成一个直角三角形。棱锥的高、侧棱和侧棱在底面的射影组成一个直角三角形PARt⊿PEORt⊿POBRt⊿PEBRt⊿BEO棱台由棱锥截得而成,所以在棱台中也有类似的直角梯形。CBEODABCDA’B’C’D’1.定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台.侧面C1B1A1D1上底面下底面顶点侧棱2.分类:由三棱锥,四棱锥,五棱锥,……截得的棱台,分别叫做三棱台,四棱台,五棱台,……3.表示:棱台ABCD-A1B1C1D1两个互相平行的面叫做底面,其中截面叫做棱台的上底面,棱锥底面叫做棱台的下底面,其余各面叫做棱台的侧面棱柱侧棱垂直于底面直棱柱底面是正多边形正棱柱棱锥底面为正多边形,顶点在底面的射影为正多边形的中心正棱锥正棱台由正棱锥截的的棱台处理台体的思想方法是还台于锥。(2)旋转体的形成几何体旋转图形旋转轴圆柱矩形矩形任一边所在的直线圆锥直角三角形一条直角边所在的直线圆台直角梯形或等腰梯形直角腰所在的直线或等腰梯形上下底中点的连线球半圆或圆直径所在的直线顶点SABO底面轴侧面母线以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥。圆锥的结构特征(2)三视图的画法①在画三视图时,能看见的轮廓线和棱用实线表示,重叠的线只画一条,不能看见的轮廓线和棱用_____表示.②三视图的正视图、侧视图、俯视图分别是从几何体的_______、正左方、_______观察几何体的正投影图.虚线正前方正上方2.空间几何体的三视图(1)三视图的名称几何体的三视图包括:、、.正视图侧视图俯视图(3)常见旋转体的三视图球的三视图都是半径相等的圆.水平放置的圆锥的正视图和侧视图均为全等的等腰三角形.水平放置的圆台的正视图和侧视图均为全等的等腰梯形.水平放置的圆柱的正视图和侧视图均为全等的矩形.3.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为___________,z′轴与x′轴和y′轴所在平面_____.(2)原图形中平行于坐标轴的线段,直观图中仍分别______________;平行于x轴和z轴的线段在直观图中保持原长度_____;平行于y轴的线段在直观图中长度为____________.45°或135°垂直平行于坐标轴不变原来的一半(3)斜二测画法中的“三变”与“三不变”“三变”坐标轴的夹角改变,与y轴平行的线段的长度变为原来的一半,图形改变.“三不变”平行性不改变,与x,z轴平行的线段的长度不改变,相对位置不改变.空间几何体的结构特征[例1](1)用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体[解析]截面是任意的且都是圆面,则该几何体为球体.[答案]C(2)下列说法正确的是()A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个平面互相平行,其余各面都是梯形的多面体是棱台D.棱台的各侧棱延长后不一定交于一点[解析]A错,如图(1);B正确,如图(2),其中底面ABCD是矩形,PD⊥平面ABCD,可证明∠PAB,∠PCB,∠PDA,∠PDC都是直角,这样四个侧面都是直角三角形;C错,如图(3);D错,由棱台的定义知,其侧棱的延长线必相交于同一点.[答案]B[方法技巧]解决与空间几何体结构特征有关问题的三个技巧(1)把握几何体的结构特征,要多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,如例1(2)中的A,C两项易判断失误;(3)通过反例对结构特征进行辨析.1.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中,假命题是()A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上对应演练解析:因为“等腰四棱锥”的四条侧棱都相等,所以它的顶点在底面的射影到底面的四个顶点的距离相等,故A,C是真命题;且在它的高上必能找到一点到各个顶点的距离相等,故D是真命题;B是假命题,如底面是一个等腰梯形时结论就不成立.答案:B2.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③存在每个面都是直角三角形的四面体;④棱台的侧棱延长后交于一点.其中正确命题的序号是________.答案解析②③④①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;③正确,如图,正方体ABCD-A1B1C1D1中的三棱锥C1-ABC,四个面都是直角三角形;④正确,由棱台的概念可知.3.给出下列四个命题:①有两个侧面是矩形的图形是直棱柱;②侧面都是等腰三角形的棱锥是正棱锥;③侧面都是矩形的直四棱柱是长方体;④底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱.其中不正确的命题为________.答案解析①②③对于①,平行六面体的两个相对侧面也可能是矩形,故①错;对于②,对等腰三角形的腰是否为侧棱未作说明(如图),故②错;对于③,若底面不是矩形,则③错;④由线面垂直的判定,侧棱垂直于底面,故④正确.综上,命题①②③不正确.空间几何体的三视图1.画三视图的规则长对正、高平齐、宽相等,即俯视图与正视图一样长;正视图与侧视图一样高;侧视图与俯视图一样宽.2.三视图的排列顺序先画正视图,俯视图放在正视图的下方,侧视图放在正视图的右方.[例2](1)(2017·贵州七校联考)如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形,按正视图,侧视图,俯视图的顺序排列)()A.①②⑥B.①②③C.④⑤⑥D.③④⑤[解析]正视图应该是边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此正视图是①;侧视图应该是边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此侧视图是②;俯视图应该是边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③.[答案]B(2)(2016·天津高考)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()[解析]先根据正视图和俯视图还原出几何体,再作其侧(左)视图.由几何体的正视图和俯视图可知该几何体为图①,故其侧(左)视图为图②.[答案]B[方法技巧]三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图注意正视图、侧视图和俯视图的观察方向;注意能看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的视图解决此类问题,可先根据已知的一部分视图,还原、推测直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入检验.(3)由几何体的三视图还原几何体的形状要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.1.一几何体的直观图如图,下列给出的四个俯视图中正确的是()解析:由直观图可知,该几何体由一个长方体和一个截角三棱柱组成.从上往下看,外层轮廓线是一个矩形,矩形内部是一条水平线段连接两个三角形.答案:B对应演练2.已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为()解析:当正视图为等腰三角形时,则高应为2,且应为虚线,排除A,D;当正视图是直角三角形时,由条件得一个直观图如图所示,中间的线是看不见的线PA形成的投影,应为虚线,故答案为C.答案:C3.如图,在正四棱柱ABCD­A1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥P­BCD的正视图与侧视图的面积之比为()A.1∶1B.2∶1C.2∶3D.3∶2解析:根据题意,三棱锥P­BCD的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高.故三棱锥P­BCD的正视图与侧视图的面积之比为1∶1.答案:A4.一个三棱锥的正视图和俯视图如图所示,则该棱锥的侧视图可能为答案解析由题图可知,该几何体为如图所示的三棱锥,其中平面ACD⊥平面BCD,故选D.5.如图是一几何体的直观图、正视图和俯视图,则该几何体的侧视图为答案解析由直观图、正视图和俯视图可知,该几何体的侧视图应为面PAD,且EC投影在面PAD上,故B正确.空间几何体的直观图直观图与原图形面积的关系按照斜二测画法得到的平面图形的直观图与原图形面积的关系:(1)S直观图=24S原图形.(2)S原图形=22S直观图.[例3]用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()[解析]由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y轴上的对角线长为22.[答案]A1.用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x轴.已知四边形ABCD的面积为22cm2,则原平面图形的面积为()A.4cm2B.42cm2C.8cm2D.82cm2对应演练2.如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6c

1 / 94
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功