矩形-菱形-正方形-2012年中考复习总结课件(原)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

一、中考目标矩形、菱形、正方形①了解平行四边形、矩形、菱形、正方形的关系a②掌握矩形、菱形、正方形的概念b③探索并掌握矩形、菱形、正方形的有关性质c④探索并掌握四边形是矩形、菱形、正方形的条件c⑤知道任意一个三角形、四边形或正方形可以镶嵌平面,并运用这几种图形进行简单的镶嵌设计b平行四边形四边形矩形菱形正方形有一个内角是直角对角线相等有一组邻边相等对角线互相垂直四条边都相等有三个角是直角有一组邻边相等对角线互相垂直有一个内角是直角对角线相等二、知识概要性质判定边①两组对边分别平行②两组对边分别相等有一个角是直角的平行四边形是矩形角矩形的四个角都是直角有三个角是直角的四边形是矩形对角线矩形的两条对角线相等对角线相等的平行四边形是矩形推论直角三角形斜边上的中线等于斜边的一半如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形(矩形)二、知识概要性质判定边菱形的四条边都相等.①一组邻边相等的平行四边形是菱形.②四条边都相等的四边形是菱形.角①对角相等.②邻角互补.对角线菱形的两条对角线互相垂直;并且每条对角线平分一组对角.对角线互相垂直的平行四边形是菱形.(菱形)二、知识概要性质判定边正方形的四条边都相等.有一组邻边相等的矩形是正方形.角正方形的四个角都是直角.有一个角是直角的菱形是正方形.对角线正方形的两条对角线相等.并且互相垂直平分.每条对角线平分一组对角.①对角线相等的菱形是正方形.②对角线互相垂直的矩形是正方形.(正方形)三、基本练习(填空题)1.如图,根据四边形的不稳定性制作边长为16cm的可活动的菱形衣架,若墙上钉子间的距离AB=BC=16cm,则∠1=_____度。2.已知,矩形ABCD的长AB=4,宽AD=3,按如图放置在直线AP上,然后不滑动转动,当它转动一周时(A→A′),顶点A所经过的路线长等于________。1206π3三、基本练习(填空题)3.如图,已知正方形纸片ABCD,M,N分别是AD,BC的中点,把BC向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,则∠PBQ=________度。30三、基本练习(选择题)1.如图,已知正方形ABCD的边长为2,如果将线段BD绕着点B旋转后,点D落在CB的延长线上的D’处,那么tan∠BAD′等于()(A)1(B)(C)(D)22.矩形ABCD的顶点A,B,C,D按照顺时针方向排列,若在平面直角坐标系中,B,D两点对应的坐标分别是(2,0),(0,0),且A,C两点关于x轴对称,则C点对应的坐标是()(A)(1,1)(B)(1,-1)(C)(1,-2)(D)(,-)BB222222(选择题)3.如图,有一块矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,则△CEF的面积为()(A)4(B)6(C)8(D)10C三、基本练习例1.工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料,使AB=CD,EF=GH.BCDAEFGH例1.工人师傅做铝合金窗框分下面三个步骤进行:(2)摆成如图所示的四边形,则这时窗框的形状是,根据的数学道理:。BCDAEFGH平行四边形两组对边分别相等的四边形是平行四边形例1.工人师傅做铝合金窗框分下面三个步骤进行:(3)将直角尺靠紧窗框的一个角,调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时,说明窗框合格,这时窗框是形,根据的数学道理是。矩有一个角是直角的平行四边形是矩形还有什么方法可以说明这个铝合金窗框是合格的?想一想ABCDABCDAC=BD∠A=∠B=∠C=90°ABCDo60若这个铝合金窗框ABCD两条对角线的夹角∠AOB为60°,△AOB的周长为3m。(1)求窗框对角线AC长;:11,,2260.312ABCDAOACBOBDACBDAOBOAOBAOBAOBOABAOBmAOBOABmACm\===\=??\D==D\===\=解四边形是矩形且又是等边三角形即的周长为ABCDo60若这个铝合金窗框ABCD两条对角线的夹角∠AOB为60°,△AOB的周长为3m。(2)求窗框ABCD的面积。22222222:901,2212133ABCDABCDABCABmACmBCACABACmSABBCm\??==\=-=-==-=\=?矩形解四边形是矩形例2.如图,两张等宽的纸条交叉重叠在一起,猜想重叠部分的四边形ABCD是什么形状?说说你的理由。ABCDFE例3.将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,打开,你会发现这是一个菱形。你能解释其中的道理吗?ABCDO若展开后的菱形纸片ABCD中,两条对角线AC=,BD=4。34(1)求菱形ABCD的面积;(3)求∠ADC的度数。(2)求菱形ABCD的周长;ABCDo如果想得到一个正方形,该怎么剪?并解释你这样做的道理。想一想ABCDO例4.已知正方形ABCDABCD(1)若一条对角线BD长为2cm,求这个正方形的周长、面积。例4.已知正方形ABCDABCD(2)若E为对角线上一点,连接EA、EC。EA=EC吗?说说你的理由。E例4.已知正方形ABCD(3)若AB=BE,求∠AED的大小。ABCDE例5.顺次连接任意四边形各边的中点,所构成的四边形以下简称为“中点四边形”。试判断中点四边形EFGH的形状,并说明理由。ABCDEFGH(1)添加一个条件,使四边形EFGH为菱形;AC⊥BDAC=BDAC=BD且AC⊥BD(2)添加一个条件,使四边形EFGH为矩形;(3)添加一个条件,使四边形EFGH为正方形;1.矩形的“中点四边形”是形;2.菱形的“中点四边形”是形;3.正方形的“中点四边形”是形。矩菱正方那么,特殊平行四边形的“中点四边形”会是怎样的图形呢?中考链接1.(河北省2005)如图,在矩形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点。若AB=2,AD=4,则阴影部分的面积为()A.3B.4C.6D.8B.ABCDEFGH中考链接2.(陕西省2005)如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD的面积比是()A.3:4B.5:8C.9:16D.1:2B.3.已知正方形ABCD,ME⊥BD,MF⊥AC,垂足分别为E、F(1)M是AD上的点,若对角线AC=12cm,求ME+MF的长。ABCDOMFE(2)若M是AD上的一个动点,ME+MF的长度是否发生改变?(3)当M点运动到何处时,四边形MFOE的面积最大?1.如图,正方形MNPQ网格中,每个小方格的边长都相等,正方形ABCD的顶点分别在正方形MNPQ的4条边的小方格的顶点上。(1)设正方形MNPQ网格中每个小方格的边长为1,求:①△ABQ,△BCM,△CDN,△ADP的面积②正方形ABCD的面积(2)设MB=a,BQ=b,利用这个图形中直角三角形和正方形的面积关系,你能验证已学过的哪一个数学公式或定理吗?相信你能给出简明的推理过程。四、训练题2.如图,在△ABC中,∠ACB=90°,BC的中垂线DE交BC于点D,交AB于点E,F在DE的延长线上,并且AF=CE.(1)证明:四边形ACEF是平行四边形.(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.(3)四边ACEF有可能是正方形吗?请证明你的结论。3.探究下列问题:(1)如图①,在△ABC中,CP⊥AB于点P,求证:AC2-BC2=AP2-BP2;(2)如图②,在四边形ABCD中,AC⊥BD,垂足为P,猜一猜AB,BC,CD,DA之间有何数量关系,用式子表示出来(不必说明理由);(3)如图③,在矩形ABCD中,P为内部任意一点,请猜想出AP,BP,CP,DP之间的数量关系,并证明之。4.如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6。(1)如图①,在OA上选取一点G,将△COG沿CG翻折,使点O落在BC边上,设为E,求折痕CG所在直线的解析式。4.(2)如图②,在OC上任取一点D,将△AOD沿AD翻折,使点O落在BC边上,记为E’。①求折痕AD所在直线的解析式;②再作E’F//AB,交AD于点F,若抛物线过点F,求此抛物线的解析式,并判断它与直线AD的交点的个数。4.(3)如图③,在OC,OA上选取适当的点D’,G’,使纸片沿D’G’翻折后,点O落在BC边上,记为E’’。请你猜想:折痕D’G’所在直线与②中的抛物线会用什么关系?用(1)中的情形验证你的猜想。5.正方形通过剪切可以拼成三角形(如图①)。方法如下:仿上例用图示的方法,解答下列问题:操作设计:(1)如图②,对直角三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形等面积的矩形。(2)如图③,对任意三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形等面积的矩形。(3)对于任意四边形,能否通过恰当的分割和重新组合拼接,使其成为一个与四边形等面积的矩形。顶岗实习是大学里的一项重大举措,对我们师范类学生来说是一个很好的锻炼机会,也是很好的体现自身价值的机会。我们可以通过顶岗实习给自己一个明确的定位。下面搜集了计量,欢迎阅读!计量实习周记120xx年9月15日第1周星期四实习的第一天,刚好下起了大雨,但这丝毫没有削减我期待的心情。为了将理论与实际相结合,为了对企业的生产与管理有更具体形象的了解,为了能够更深入地了解和认识社会,我认真地完成了今天的实习内容。很早就出发的我,也就早早地到达了我的目的地圣美达电缆厂。到达之后,我首先注意到的是该厂到处郁郁葱葱的树木。环境日益受到重视的今天,该厂的绿化无疑先给我留下了一个深刻印象。良好的工作环境是非常重要的,那时我就想,为工人们创造一个良好的工作环境应该也是该厂管理的一个重要方面,从而也就可见,该电缆厂有着以人为本的重要管理理念。稍候片刻之后,厂里的一位热情的赵厂长先为我上了生动的一课。他精简却又生动地为我先介绍了工厂的概况,告诉了我该电缆厂的主要产品,电缆生产制造的主要过程和各项注意事项,产品的市场和销售情况,以及该工厂的一些管理工作和管理理念等。然后,他还提醒了我在接下来的参观中应注意的各个方方面面。在这节别开生面的课上,在这节远离学校课本而融入社会企业的课上,确实让我获益匪浅。这节课,先让我对生产企业的生产过程,具体到电缆的生产流程,有了一个感性的认知,为我接下来的参观作了一个重要前提,同时,这节课也让我感受到了圣美达电缆厂的严谨风格、力求创新的生产指导、以人为本的管理理念和追求高质量的服务态度。但是,眼见为实,实践出真知,所以,深入到工厂车间参观才是更重要的方面,也是我这次实习的主要内容。,我都迫不及待地要去参观生产车间的具体情况。工作人员带领着,按产品生产步骤参观工厂车间,了解电缆制造过程。在工作人员的带领下,我终于来到了真正的工厂车间。首先映入眼帘的,是一个大大的红幅上写着的安全第一。确实,无论什么情况,安全总是最重要的,尤其是电缆这种大设备大机器生产,安全问题更是不容忽视。安全来自长期警惕,事故源于瞬间麻痹,在车间的很多地方我都看到了这句文明标语。工作人员告诉我,工厂总是本着以人为本的理念,高度重视安全问题,确保一切生产工作在安全环境下进行。在管理越来越受重视的今天,对人的管理技巧也倍受关注,企业对工人的安全的关心无疑为企业的生产等方面的管理奠定了重要的基础。每一个车间还都设有绿色通道,确保了我参观的安全;我也注意到了在每个车间,每隔一段适当的距离就会有灭火器。工厂的卫生也是值得一叹的。无论我走到哪里,都看不到有一点废纸、一点不该有的垃圾,也没有看到杂物堆放。虽然工厂因为历史较久,显得有点旧,但它干净的环境却让我感觉焕然一新。在这样一个环境下工作,我想,谁都愿多出几分力,谁都会觉得舒服,谁都会尽心尽力工作。在参观的过程,我也感受到了该企业对工人的鼓励,对质量的高要求,对产品的不断改进的目标,这些,从到处贴着的文明精神标语就可看出。提高自身竞争能力,树立顾客要求意识

1 / 35
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功