流水行船初步(教师版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第四讲流水行船初步一、参考系速度通常我们所接触的行程问题可以称作为“参考系速度为0”的行程问题,例如当我们研究甲乙两人在一段公路上行走相遇时,这里的参考系便是公路,而公路本身是没有速度的,所以我们只需要考虑人本身的速度即可.二、参考系速度——“水速”但是在流水行船问题中,我们的参考系将不再是速度为0的参考系,因为水本身也是在流动的,所以这里我们必须考虑水流速度对船只速度的影响,具体为:①水速度=船速+水速;②逆水速度=船速−水速.(可理解为和差问题)由上述两个式子我们不难得出一个有用的结论:船速=(顺水速度+逆水速度)÷2;水速=(顺水速度−逆水速度)÷2此外,对于河流中的漂浮物,我们还会经常用到一个常识性性质,即:漂浮物速度=流水速度.三、流水行船问题中的相遇与追及①两只船在河流中相遇问题,当甲、乙两船(甲在上游、乙在下游)在江河里相向开出:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速−水速)=甲船船速+乙船船速②同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,与水速无关.甲船顺水速度−乙船顺水速度=(甲船速+水速)−(乙船速+水速)=甲船速−乙船速也有:甲船逆水速度−乙船逆水速度=(甲船速−水速)−(乙船速−水速)=甲船速−乙船速.说明:两船在水中的相遇与追及问题同静水中的及两车在陆地上的相遇与追及问题一样,与水速没有关系.例题1【提高】某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?【分析】从甲地到乙地的顺水速度为15318(千米/时),甲、乙两地路程为188144(千米),从乙地到甲地的逆水速度为15312(千米/时),返回所需要的时间为1441212(小时).【精英】一只小船在静水中的速度为每小时25千米.它在长144千米的河中逆水而行用了8小时.求返回原处需用几个小时?【分析】4.5小时例题2【提高】两个码头相距352千米,一船顺流而下,行完全程需要11小时.逆流而上,行完全程需要16小时,求这条河水流速度.【分析】(352÷11−352÷16)÷2=5(千米/小时).【精英】一位少年短跑选手,顺风跑90米用了10秒,在同样的风速下逆风跑70米,也用了10秒,则在无风时他跑100米要用________秒.【分析】本题类似于流水行船问题.根据题意可知,这个短跑选手的顺风速度为90109米/秒,逆风速度为70107米/秒,那么他在无风时的速度为(97)28米/秒.在无风时跑100米,需要的时间为100812.5秒.【拓展1】一艘轮船在两个港口间航行,水速为每小时6千米,顺水下行需要4小时,返回上行需要7小时.求:这两个港口之间的距离?【分析】(船速+6)×4=(船速−6)×7,可得船速=22,两港之间的距离为:(22+6)×4=112千米.【拓展2】轮船用同一速度往返于两码头之间,在相同时间内如果它顺流而下能行10千米,如果逆流而上能行8千米,如果水流速度是每小时3千米,求顺水、逆水速度【分析】由题意知顺水速度与逆水速度比为10:8,设顺水速度为10份,逆水速度为8份,则水流速度为(108)21份恰好是3千米/时,所以顺水速度是10330(千米/时),逆水速度为8324(千米/时)例题3【提高】乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路,用了3小时.甲船返回原地比去时多用了几小时?【分析】乙船顺水速度:120÷2=60(千米/小时).乙船逆水速度:120÷4=30(千米/小时).水流速度:(60−30)÷2=15(千米/小时).甲船顺水速度:120÷3=40(千米/小时).甲船逆水速度:40−2×15=10(千米/小时).甲船逆水航行时间:120÷10=12(小时).甲船返回原地比去时多用时间:12−3=9(小时).【精英】船往返于相距180千米的两港之间,顺水而下需用10小时,逆水而上需用15小时.由于暴雨后水速增加,该船顺水而行只需9小时,那么逆水而行需要几小时?【分析】本题中船在顺水、逆水、静水中的速度以及水流的速度都可以求出.但是由于暴雨的影响,水速发生变化,要求船逆水而行要几小时,必须要先求出水速增加后的逆水速度.船在静水中的速度是:(180÷10+180÷15)÷2=15(千米/小时).暴雨前水流的速度是:(180÷10−180÷15)÷2=3(千米/小时).暴雨后水流的速度是:180÷9−15=5(千米/小时).暴雨后船逆水而上需用的时间为:180÷(15−5)=18(小时).例题4【提高】【精英】两港相距560千米,甲船往返两港需105小时,逆流航行比顺流航行多用了35小时.乙船的静水速度是甲船的静水速度的2倍,那么乙船往返两港需要多少小时?【分析】先求出甲船往返航行的时间分别是:10535270()(小时),10535235()(小时).再求出甲船逆水速度每小时560708(千米),顺水速度每小时5603516(千米),因此甲船在静水中的速度是每小时168212()(千米),水流的速度是每小时16824()(千米),乙船在静水中的速度是每小时12224(千米),所以乙船往返一次所需要的时间是56024(456024448)()(小时).【拓展3】甲、乙两船分别从A港顺水而下至480千米外的B港,静水中甲船每小时行56千米,乙船每小时行40千米,水速为每小时8千米,乙船出发后1.5小时,甲船才出发,到B港后返回与乙迎面相遇,此处距A港多少千米?【分析】甲船顺水行驶全程需要:480(568)7.5(小时),乙船顺水行驶全程需要:480(408)10(小时).甲船到达B港时,乙船行驶1.57.59(小时),还有1小时的路程(48千米)①,即乙船与甲船的相遇路程.甲船逆水与乙船顺水速度相等,故相遇时在相遇路程的中点处②,即距离B港24千米处,此处距离A港48024456(千米).注意:①关键是求甲船到达B港后乙离B港还有多少距离②解决①后,要观察两船速度关系,马上豁然开朗.这正是此题巧妙之处,如果不找两船速度关系也能解决问题,但只是繁琐而已,奥数特点就是体现四两拨千斤中的巧劲例题5【提高】【精英】甲、乙两船从相距64千米的A、B两港同时出发相向而行,2小时相遇;若两船同时同向而行,则甲用16小时赶上乙.问:甲、乙两船的速度各是多少?【分析】两船的速度和64232(千米/时),两船的速度差64164(千米/时),根据和差问题,可求出甲、乙两船的速度分别为:18千米/时和14千米/时.例题6【提高】【精英】甲、乙两艘游艇,静水中甲艇每小时行3.3千米,乙艇每小时行2.1千米.现在甲、乙两游艇于同一时刻相向出发,甲艇从下游上行,乙艇从相距27千米的上游下行,两艇于途中相遇后,又经过4小时,甲艇到达乙艇的出发地.水流速度是每小时________千米.【分析】两游艇相向而行时,速度和等于它们在静水中的速度和,所以它们从出发到相遇所用的时间为27(3.32.1)5小时.相遇后又经过4小时,甲艇到达乙艇的出发地,说明甲艇逆水行驶27千米需要549小时,那么甲艇的逆水速度为2793(千米/小时),则水流速度为3.330.3(千米/小时).例题7【提高】小刚和小强租一条小船,向上游划去,不慎把水壶掉进江中,当他们发现并调过船头时,水壶与船已经相距2千米,假定小船的速度是每小时4千米,水流速度是每小时2千米,那么他们追上水壶需要多少时间?【分析】已知路程差是2千米,船在顺水中的速度是船速水速,水壶飘流的速度等于水速,所以速度差船顺水速度水壶飘流的速度(船速水速)水速船速.追及时间路程差船速,追上水壶需要的时间为240.5(小时).【精英】某河有相距45千米的上下两港,每天定时有甲乙两船速相同的客轮分别从两港同时出发相向而行,这天甲船从上港出发掉下一物,此物浮于水面顺水漂下,4分钟后与甲船相距1千米,预计乙船出发后几小时可与此物相遇.【分析】物体漂流的速度与水流速度相同,所以甲船与物体的速度差即为甲船本身的船速(水速作用抵消),甲的船速为1÷1/15=15千米/小时;乙船与物体是个相遇问题,速度和正好为乙本身的船速,所以相遇时间为:45÷15=3小时例题8【提高】一艘轮船顺流航行80千米,逆流航行48千米共用9小时;顺流航行64千米,逆流航行96千米共用12小时.求轮船的速度.【分析】轮船顺流航行80千米,逆流航行48千米,共用9小时,相当于顺流航行320千米,逆流航行192千米共用36小时;顺流航行64千米,逆流航行96千米共用12小时,相当于顺流航行192千米,逆流航行288千米共用36小时;这样两次航行的时间相同,所以顺流航行320192128千米与逆流航行28819296千米所用的时间相等,所以顺水速度与逆水速度的比为128:964:3.将第一次航行看作是顺流航行了804834144千米,可得顺水速度为144916(千米/时),逆水速度为164312(千米/时),轮船的速度为1612214(千米/时)【精英】一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米.那么甲、乙两地之间的距离是多少千米?【分析】后一小时比前一小时多行6千米,说明前一小时小船逆水行驶,差3千米走完全程.后一小时小船逆水走3千米,顺水走了一个全程.因为顺水、逆水速度每小时差8千米,所以若小船一小时全顺水走,应比行程时的第一小时多行8千米,也就是比一个全长多5千米.再与小船第二小时行驶做比较,我们就得到小船顺水走5千米的时间与逆水走3千米的时间相同,这个时间我们认为是1份.在一份时间内,顺水与逆水所行距离差2千米,一小时差8千米,所以一小时内有8÷2=4份时间.由此得出小船顺水一小时走5×4=20干米,逆水一小时走3×4=12千米.因为小船在第一小时始终逆水,比全程少走3千米,所以从甲地到乙地为12×1+3=15千米.【点拨】本题最重要的是认识到顺水走5千米与逆水走3千米所需时间相同,这是一种比较,将两部分相比较,去掉公共的未知部分,就剩下已知部分.再者,就是对于两个速度差关系之间的处理,一个差是一小时差8千米,行程不知道;一个差是一份时间差2千米,时间不知道.这两者的除法,使得对本题作出圆满的解答.从题中看出,流水行船问题并不一定总要先求静水中船速,水速才能将题目解决.【拓展4】甲、乙两船在静水中速度相同,它们同时自河的两个码头相对开出,4小时后相遇.已知水流速度是6千米/时.求:相遇时甲、乙两船航行的距离相差多少千米?【分析】在两船的船速相同的情况下,一船顺水,一船逆水,它们的航程差是什么造成的呢?不妨设甲船顺水,乙船逆水.甲船的顺水速度船速水速,乙船的逆水速度船速水速,故:速度差(船速水速)(船速水速)2水速,即:每小时甲船比乙船多走6212(千米).4小时的距离差为12448(千米).【补充1】一条小河流过A,B,C三镇.A,B两镇之间有汽船来往,汽船在静水中的速度为每小时11千米.B,C两镇之间有木船摆渡,木船在静水中的速度为每小时3.5千米.已知A,C两镇水路相距50千米,水流速度为每小时1.5千米.某人从A镇上船顺流而下到B镇,吃午饭用去1小时,接着乘木船又顺流而下到C镇,共用8小时.那么A,B两镇间的距离是多少千米?【分析】如下画出示意图有AB段顺水的速度为11+1.5=12.5千米/小时,有BC段顺水的速度为3.5+1.5=5千米/小时.而从AC全程的行驶时间为8−1=7小时.设AB长千米,有50712.55xx,解得=25.所以A,B两镇间的距离是25千米.练习1一只小船在静水中速度为每小时30千米.它在长176千米的河中逆水而行用了11小时.求返回原处需用几个小时?【分析】这只船

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功