基于格的群签名方案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

JournalofChineseComputerSystems20111111Vol.32No.1120112011-07-222011-09-07609701112007CB311201200802480016.1985CCF.1212002402200240E-mailyongdzx@yahoo.com.cn2010...TP309A1000-1220201111-2243-05GroupSignatureSchemeBasedonLatticeWUYong-dong121DepartmentofComputerScienceShanghaiJiaotongUniversityShanghai200240China2ShanghaiKeyLaboratoryofScalableComputingandSystemShanghaiJiaotongUniversityShanghai200240ChinaAbstractAnattackismountedonagroupsignatureschemebasedonlatticepostedinAsiaCrypt2010.Itshowsthegroupsignatureschemeisvulnerabletotrapattacksandadishonestgroupmanagercangetallgroupmembers'signingkeysandthenforgeallgroupmembers'validsignatures.Meanwhiletheschemecan'tincreaseordeletegroupmembersflexiblyandefficientlywhichisnotappli-cabletodynamicgroups.Everytimeanewmemberjoinsthesystemhastoupdatethepublickeyandallgroupmembers'signingkeyswhichareofhugecalculationandlowefficiency.Alsotheschemedoesn'tprovideaneffectivemethodtorevokegroupmem-bers.Usingstatisticalzero-knowledgeproofsandtimeparametersanimprovedschemebasedonthehardnessoftheclosestvectorproblemisproposed.Theimprovedschemeisanti-trapattacksandcandynamicincreaseordeletesgroupmembersmoreefficientlyandapplicably.Keywordsgroupsignaturetrapattackstatisticalzero-knowledgeproofdynamicgroup1D.ChaumE.Van.Heyst19911.、、2-4、、5..2010S.DovGordon、JonathanKatzVinodVaikun-tanathan6GKV.12.7.1.2..3..2n.2.11.nmm≤nb1b2…bmLb1b2…bm=∑mi=1λibi|λi∈Z.b1b2…bm.GKV∧AT=y∈Zmq|y=ATsmodq∧┴A=w∈Zmq|Aw=0modqA∈Zn×mqs∈Znq∧┴A∧AT.x‖x‖x.xy‖x-y‖=∑mi=1|xi-yi|槡2.zdist∧ATz=mins∈Znq‖ATs-zmodq‖.2.22.SVPShortestVectorProblem.υμ‖υ‖≤‖μ‖.3.CVPClosestVectorProblemyy.υμ‖υ-y‖≤‖μ-y‖.NP8.2.3LWELWELearningWithError.4.s>0c、smDsc=1sm·exp-π‖x-c‖s2x∈R5.∧∈Zmmx∈∧D∧scx=Dscx∑y∈∧Dscy6.LWE9nM≥nq≥2s∈ZnqRmXZn×mq×0qm1LWEmqXsA∈Zn×mqe←XAATs+e2UmqA∈Zn×mqy∈0qmAyPPTDΔ=|Prs←ZnqAy←LWEmqXsDAy=1-PrAy←UmqDAy=1|ΔLWEmqXss.LWEmqXsXDαqcXLWEmqDαqcsLWEmqαGKVmqnpolynα1/polynα·q>2槡nLWEmqαs.LWEmqXsXDZmαqLWEmqDzmαqsLWE^mqαGKV16.m=mnq=qnα=αnα×q=ω槡lognLWEmqαLWE^mqα.2.4GPVGKVGPV.210.PPTProbabilisticPolynomialTimeTrapSamp1n1mqq≥2m≥8nlogqA∈Zn×mqT∈Zm×mqAZn×mqT∧┴AA·T=0modq.GentryPeikertVaikuntanathan11TrapSamp.qnm≥8nlogqs=ω槡nlogqlognGPVGen1nGPVInvertATsμGPVGen1nTrapSamp1n1mqATAfAe=Aemodqe∈Zm‖e‖≤槡sm.DZmsGPVInvertATsμt∈ZmAt=μmodqe←D∧┴A+tse.2.5GKV.36.PPTSuperSamp1n1mqq≥2m≥n+8nlogqB∈Zn×mA∈Zn×mqT∈Zm×mqABT=0modqAZn×mqT∧┴AA·T=0modq.2.6.GKVNIWINoninteractiveWitness-Indistinguisha-ble.NIWIGKV344222011D.MicciancioS.P.Vadhan20037.74.3GKVGKV6.GKV、.GKV4G.KeyGen、、G.Sign、G.Verify、G.Open.q=polynm≥8nlogqs=ω槡nlogqlognH3.1G.KeyGen1n1NB1S1…BNSN←TrapSamp1n1mq1≤i≤NAiTi←SuperSamp1n1mqBi.PK=AiBiNi=1TK=SiNi=1gsk=TiNi=1.3.2G.SigngskjMjMγ←01nM=M‖γ1≤i≤Nhi=HM‖i·ej←GPVInvertAjTjshj·i≠jei∈ZmqAiei=himodq1≤i≤Nsi←ZnqZi=BTisi+eimodq∈Zmq.NIWIπ6.σ=γZi…ZNπ.3.3G.VerifyPKMσM=M‖γππ1≤i≤NAiZi=HM‖imodq10.3.4G.OpenTKMσSi1≤i≤Ndist∧BTiZi≤槡smdist∧BTiZii.3.53.5.1G.KeyGenGKV.3.5.2..4GKV.GKV.4.1G.KeyGen1n1NTcurrentN-1PK=AiBiN-1i=1TbeforeTbeforeN-1TK=SiN-1i=1Tbeforei1≤i≤N-1Ti.LPKLTK.UN1BNSN←TrapSamp1n1mqy∈Zmqt∈R+BN、ytUN.2UNANTN←SuperSamp1n1mqBNAN.7aUNTNATNww∈Znμ=y-ATNw、c1…ck∈01k=polyn、r1…rk∈β0gt/2g=Ω槡n/logni*‖ri*+2ci*-1μ‖≤gt/2i*=1ci*=0ri*=μ/2‖ri*+2ci*-1μ‖≤gt/2.mi=ciy+rimodATN1≤i≤kkm1…mk.bkq∈01UN.cq=iciUNciATNvi=mi-ri+ciy1≤i≤kq≠iciUNci*ATNvi*1-ci*ATNvi*+2ci*-1y-μ.dkc1…ckkATNv1…ATNvki1≤i≤k∑ici=qmod2‖mi-ATNvi+ciy‖≤gt/2UNUNPK=AiBiNi=1TcurrentTcurrentUNPKLPKTK=SiNi=1TcurrentTKLTKi1≤i≤N-1NTN.4.2G.SigngskjMTcurrentjMγ←01nM=M‖γ‖TcurrentTcurrent542211Nhi=HM‖i1≤i≤N·ej←GPVInvertAjTjshj·i≠jei∈ZmqAiei=himodq1≤i≤Nsi←ZnqZi=BTiSi+eimodq∈Zmq.NIWIπ.σ=γTcurrentZi…ZNπ.4.3G.VerifyPKMσTcurrentLPKPK=AiBiNi=1TcurrentM=M‖γ‖TcurrentππNσZi1≤i≤NAiZi=HM‖imodq10.4.4G.OpenTKMσTcurrentLTKTK=SiNi=1Tcurrent1≤i≤Ndist∧BTiZi≤槡smdist∧BTiZii.4.5G.DeletekTdeleteUkPK=AiBiNi=1&i≠kTdeleteTdeleteUkPKLPKTK=SiNi=1&i≠kTdeleteTKLTK.55.1σ=γTcurrentZi…ZNππ31≤i≤NAiZi=AiBTisi+ei=Aiei=HM‖imodq1.GPVInvertejZmq11Zj=BTjsj+ejmodq∈ZmqBTjsjdist∧BTjZj=mins∈Znq‖BTjs-Zjmodq‖s=sjdist∧BTiZi≤槡smj..5.2、6.LWE^mqα.Zi=BTisi+eimodqi≠jeiZmqej←D∧┴A+ts1LWE^mqαejeisi←Znq1≤i≤NZjZi.G.KeyGen7.5.3、6.GPV.PPTAGPVPPTFFA6.AFGPVGPV.5.4GKV..G.KeyGen7.5.5Uiσ=γTcurrentZi…ZNπ1N.2NAiUiAiZi≠HM‖imodq.....5.6....64222011.62010..References1ChaumDVanHeystE.GroupsignaturesA.InProceedingsoftheAdvancesinCryprology-EUROCRYPT'91C.BerlinSpringer-Verlag1991257-265.2CamenischJStadlerM.EfficientgroupsignatureschemesforlargegroupsA.InProceedingsoftheAdvancesinCryprology-CRYPTO'97C.BerlinSpringer-Verlag1997410-424.3AtenieseGCamenischJJoyeMetal.Apracticalandprovablyse-curecoalition-resistantgroupsignatureschemeA.InProceed-ingsoftheAdvancesinCryptology-CRYPTO2000C.Heidel-bergSpringer-Verlag2000255-270.4DanBonehXavierBoyenHovavShacham.ShortgroupsignatureA.InProceedingsoftheAdvancesinCryptology-CRYPTO'04C.BerlinSpringer-Verlag200441-555ShorPW.Polynomial-timealgorithmsforprimefactorizationanddiscretelogarithmsonaquantumcomputerJ.SIAMJournalofComputing19972651484-1509.6DovGordonSJonathanKatzVinodVaikuntanathan.Agroupsig-natureschemefromlatticeassumptionsA.InProceedingsoftheAdvancesinCryptology-ASIACRYPT'1

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功