2.1.1指数与指数幂的运算-课件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2.1.1指数与指数幂的运算问题1、根据国务院发展研究中心2000年发表的《未来20年我国发展前景分析》判断,未来20年,我国GDP(国内生产总值)年平均增长率可望达到7.3%,那么,在2001~2020年,各年的GDP可望为2000年的多少倍?问题2:当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半.根据此规律,人们获得了生物体内碳14含量P与死亡年数t之间的关系考古学家根据(*)式可以知道,生物死亡t年后,体内的碳14含量P的值。573021tP(*)定义1:如果xn=a(n1,且nN*),则称x是a的n次方根.一、根式定义2:式子叫做根式,n叫做根指数,叫做被开方数naa填空:(1)25的平方根等于_________________(2)27的立方根等于_________________(3)-32的五次方根等于_______________(4)16的四次方根等于______________(5)a6的三次方根等于_______________(6)0的七次方根等于___________5252164236aa32732325007当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.当n是偶数时,正数的n次方根有两个,它们互为相反数.(1)当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.(2)当n是偶数时,正数的n次方根有两个,它们互为相反数.(3)负数没有偶次方根,0的任何次方根都是0.记作.00=n性质:(4)aann)(543101232_______81_______2________3_______233281一定成立吗?aann探究1、当n是奇数时,2、当n是偶数时,aann)0()0(||aaaaaann例1、求下列各式的值:323424(1)(8)(2)(10)(3)(3)(4)()()a-bab.练习①计算②若③已知则b__a(填大于、小于或等于)④已知,求的值2211,aaaa求的取值范围22()()xabxba343343(8)(32)(23)32xab23642xaxa二、分数指数幂1.复习初中时的整数指数幂,运算性质00,1(0),0naaaaaaa无意义1(0)nnaaa;()mnmnmnmnaaaaa(),()nmmnnnnaaabab2.观察以下式子,并总结出规律:a>01051025255()aaaa884242()aaaa1212343444()aaaa5105102525()aaaa•小结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式)思考:根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式?如:2323(0)aaa12(0)bbb5544(0)ccc*(0,,1)mnmnaaanNn即:为此,我们规定正数的分数指数幂的意义为:*(0,,)mnmnaaamnN正数的负分数指数幂的意义与负整数幂的意义相同*1(0,,)mnmnaamnNa即:规定:0的正分数指数幂等于0,0的负分数指数幂无意义由于整数指数幂,分数指数幂都有意义,因此,有理数指数幂是有意义的,整数指数幂的运算性质,可以推广到有理数指数幂,即:(0,,)rsrsaaaarsQ()(0,,)rSrsaaarsQ()(0,0,)rrrabababrQ例2、求值例3、用分数指数幂的形式表示下列各式(其中a0):43521328116;21;25;8aaaaaa3223)3()2()1(3例4、计算下列各式(式中字母都是正数)211511336622(1)(2)(6)(3)ababab31884(2)()mn34232(1)(25-125)25(2)(0)aaaa例5、计算下列各式三、无理数指数幂一般地,无理数指数幂(0,是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.a思考:请说明无理数指数幂的含义。32小结1、根式和分数指数幂的意义2、根式与分数指数幂之间的相互转化3、有理指数幂的含义及其运算性质课堂练习:课本P54练习1、2、3。1、已知,求的值。ax136322xaxa2、计算下列各式)()2)(2(2222aaaa2121212121212121)1(babababa3、已知,求下列各式的值21212121)2()1(xxxx31xx4、化简的结果是()46394369)()(aa24816D.C.B..AaaaaC5、2-(2k+1)-2-(2k-1)+2-2k等于()A.2-2kB.2-(2k-1)C.-2-(2k+1)D.26、有意义,则的取值范围是()x21)1|(|x7、若10x=2,10y=3,则。2310yxC(-,1)(1,+)3628、,下列各式总能成立的是()Rba,babababababababa10104444228822666)(D.C.)(B.).(A9、化简的结果())21)(21)(21)(21)(21(214181161321)21(21D.121C.)21(B.)21(21A.32132113211321BA作业:课本P59,习题2.1A组1、2、3、4;B组2。

1 / 24
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功