数列中分奇偶数项求和问题陕西省吴起县高级中学鲁俊数列求和问题中有一类较复杂的求和,要对正整数n进行分奇数和偶数情形的讨论,举例说明如下:一、相邻两项符号相异;例1:求和:n1nSn-3…(-1)(4)nN解:当n为偶数时:S1591342nnnnn当n为奇数时:159134n32nS(4-3)(4-)n-1nnnn二、相邻两项之和为常数;例2:已知数列{an}中a1=2,an+an+1=1,Sn为{an}前n项和,求Sn解:①当n为偶数时:12341nnnSaaaaaa…12341()()()122nnnnaaaaaa…②当n为奇数时:123451()()()nnnSaaaaaaa…13222nn三、相间两项之差为常数;例3:已知数列{an}中a1=1,a2=4,an=an-2+2(n≥3),Sn为{an}前n项和,求Sn解:∵an-an-2=2(n≥3)∴a1,a3,a5,…,a2n-1为等差数列;a2,a4,a6,…,a2n为等差数列当n为奇数时:11(1)22nnan当n为偶数时:4(1)222nnan即n∈N+时,1(1)nnan∴①n为奇数时:1(1)(123)2122nnnnSnn…②n为偶数时:(1)(123)222nnnnSnn…四、相间两项之比为常数;例4:已知an,an+1为方程21()03nnxCx的两根n∈N+,a1=2,Sn=C1+C2+…+Cn,求an及S2n。解:依题意:11()3nnnaa∴213nnaa其中1212,6aa。∴13521,,,...,naaaa为等比数列;2462,,,...,naaaa为等比数列∴①n为偶数时:11222211111()()()36323nnnnaa②n为奇数时:11122112()2()33nnna则有:12212()21()311()2()23{nnnnkkNankkN而Cn=an+an+1∴①n为奇数时,n+1为偶数:11122211111312()()()32363nnnnnnCaa则:1352113163113nnCCCC(1-)…②n为偶数时,n+1为奇数:222111151()2()()23323nnnnnnCaa则:于是:24625163113nnCCCC(1-)…21234212...11(1)(1)1359133..(1)1166231133nnnnnnScccccc