复变函数习题总汇与参考答案第1章复数与复变函数一、单项选择题1、若Z1=(a,b),Z2=(c,d),则Z1·Z2=(C)A(ac+bd,a)B(ac-bd,b)C(ac-bd,ac+bd)D(ac+bd,bc-ad)2、若R0,则N(∞,R)={z:(D)}A|z|RB0|z|RCR|z|+∞D|z|R3、若z=x+iy,则y=(D)ABCD4、若A=,则|A|=(C)A3B0C1D2二、填空题1、若z=x+iy,w=z2=u+iv,则v=(2xy)2、复平面上满足Rez=4的点集为({z=x+iy|x=4})3、(设E为点集,若它是开集,且是连通的,则E)称为区域。4、设z0=x0+iy0,zn=xn+iyn(n=1,2,……),则{zn}以zo为极限的充2zz2zzizz2izz2)1)(4()1)(4(iiiinlimnlim分必要条件是xn=x0,且yn=y0。三、计算题1、求复数-1-i的实部、虚部、模与主辐角。解:Re(-1-i)=-1Im(-1-i)=-1|-1-i|=2、写出复数-i的三角式。解:3、写出复数的代数式。解:4、求根式的值。解:45|11|arctan),1(12)1()1(iaryi在第三象限23sin23cosiiiiiiiiiiiiiiiii212312121)1()1)(1()1(11iiii11327)35sin35(cos33)sin(cos33)3sin3(cos3327)27arg(327)34(2)32(1303ieWieWieWziii的三次根的值为四、证明题1、证明若,则a2+b2=1。证明:而biayixyixbiayixyix||||yixyixbia22||babia11122222222babayxyxyixyix3、证明:证明:)Re(2212221221zzzzzz)Re(2)(2)()())(())(())(())((2112212211122122211221221121212121221zzbyaxiaybxbyaxiaybxbyaxbiayixyixbiazzzzyixzyixzbiazbiazzzzzzzzzzzzzzzzzzzzzzzzz则则设)Re(2212221221zzzzzz第2章解析函数一、单项选择题1.若f(z)=x2-y2+2xyi,则2、若f(z)=u(x,y)+iv(x,y),则柯西—黎曼条件为(D)ABCD3、若f(z)=z+1,则f(z)在复平面上(C)A仅在点z=0解析B无处解析C处处解析D在z=0不解析且在z≠0解析4、若f(z)在复平面解析,g(z)在复平面上连续,则f(z)+g(z)在复平面上(C)A解析B可导C连续D不连续二、填空题1、若f(z)在点a不解析,则称a为f(z)的奇点。2、若f(z)在点z=1的邻域可导,则f(z)在点z=1解析。3、若f(z)=z2+2z+1,则4、若,则不存在。)()(Dzfyvxvyuxu且xvxuxvyu且yvxvyuxu且xvyuyvxu且22)(zzf)2)(1(7)(zzzf)1(f三、计算题:1、设f(z)=zRe(z),求解:=2、设f(z)=excosy+iexsiny,求解:f(z)=excosy+iexsiny=ez,z=x+iyu=excosyv=exsinyf(z)=u+iv∴f(z)在复平面解析,且=excosy+iexsiny3、设f(z)=u+iv在区域G内为解析函数,且满足u=x3-3xy2,f(i)=0,试求f(z)。解:依C-R条件有Vy=ux=3x2-3y2则V(x1y)=3x2y-y3+c(c为常数)故f(z)=x3-3xy2+i(3x2y-y3+c)=x3-3xy2+i(cx2y-y3)+ic=z3+ic,为使f(i)=0,当x=0,y=1时,f(i)=0,有f(0)=-i+ic=0)0()0(lim0ffz)0()0(lim0ffz)Re(lim0z0)Re(lim0z)(zfyeyvxuxcosyeyvyuxsinieyezfxcos)()(zfcxQxyuyxQxyvxQyyxdyyxvx)(6)(6)(3)33(3222∴c=1∴f(z)=Z3+i4、设f(z)=u+iv在区域G内为解析函数,且满足u=2(x-1)y,f(2)=-i,试求f(z)。解:依C-R条件有Vy=ux=2y∴V==y2+(x)∴Vx=∴(x)=V=y2-x2+2x+c(c为常数)∴f(z)=2(x-1)y+i(y2-x2+2x+c)为使f(z)=-i,当x=2y=0时,f(2)=ci=-i∴c=-1∴f(z)=2(x-1)y+i(y2-x2+2x-1)=-(z-1)2i四、证明题1、试在复平面讨论f(z)=iz的解析性。解:令f(z)=u+ivz=x+iy则iz=i(x+iy)=-y+ix∴u=-yv=x于是ux=0uy=-1Vx=1Vy=0∵ux、uy、vx在复平面内处处连接又Ux=VyUy=-Vx。ydy2zxuyx2)(cxxdxx2)22(2∴f(z)=iz在复平面解析。2、试证:若函数f(z)在区域G内为解析函数,且满足条件f(z)=0,z∈G,则f(z)在G内为常数。证:设f(z)=u+iv,z=x+iy,z∈G∵f(z)在G内解析,Ux=Vy,Uy=-Vx又f(z)=0,f(z)=Ux+iVxUx=0Vx=0Uy=-Vx=0Ux=Vy=0U为实常数C1,V也为实常数C2,f(z)=C1+iC2=Z0f(z)在G内为常数。复变函数课程作业参考解答2第3章初等函数一、单项选择题1.z=(A)是根式函数nzw的支点.(A)0(B)1(C)(D)i2.z=(D)是函数zwln的支点.(A)i(B)2i(C)-1(D)03.ei=(B).(A)e-1+e(B)cos1+isin1(C)sin1(D)cos14.sin1=(A)(A)ieeii2(B)ieeii2(C)21ee(D)21ee二、填空题1.cosi=21ee2.ie1=e(cos1+isin1)3.lni=i24.ln(1+i)=)24(221kiLnk为整数.三、计算题1.设z=x+iy,计算2ze.解:xyiyxiyxz2)(2222∴xyiyeexz2222)]]2sin()2)[cos(exp[(22xyixyyx∴2ze=22yxe)exp(2z=22yxe2.设z=x+iy,计算)Re(1ze.解:∵z=x+iy∴222211yxyiyxxiyxz∴)sin(cos1222222yxyiyxyyxxzee∴2221cos)Re(22yxyeeyxx3.求方程izln2的解.解:∵lnz=2/i∴由对数函数的定义有:Z=iiei2sin2cos2/∴所给方程的解为z=i4.求方程iez31的解.解:∵)3sin3(cos231iiez=)3sin3(cos2ieLn根据指数函数的定义有:z=n2+i3/或z=n(1+i3)四、证明题1.试证:zzzcossin22sin.证明:根据正弦函数及余弦正数定义有:ieeziziz22sin22222cossin2izizizeeiizezzieeiziz222∴sin2z=2sinz·cosz2.证明:xnxxnnxxx2sin2sin21sinsin2sinsin.证明:令A=nxxxcos2coscos1B=sinx+sin2x+…sinnx∴inxxiixeeeBiA2122)1(121111xiizixxniexneeexnixixniexxnexixeni22212sin21sin2sin221sin2=)2sin2(cos2sin21sinxnixnxxn∴xnxxnxxx2sin2sin21sinsin2sinsin第4章解析函数的积分理论一、单项选择题1.cdz2(D),c为起点在0,终点在1+i的直线段.(A)0(B)1(C)2i(D)2(1+i)2.1)(sinzAzdz.(A)0(B)10i(C)i(D)123i3.5)(5zBdzz(A)i(B)10i(C)10i(D)04.32)23(sin2zzz=(A).(A)23cos4i(B)i4(C)i2(D)i2二、填空题1.若)(zf与)(xg沿曲线c可积,则cccdzzgdzzfdzzgzf)()()]()([.2.设L为曲线c的长度,若f(z)沿c可积,且在c上满足Mzf)(,则MLdzzfc)(.3.177izdz4.eezdzii01cos2三、计算题1.计算积分czdzIm,其中c为自0到2+i的直线段.解:c的方程为:)10()()(ttiztzz其次由titzzyix)2()(得tzImdtidttzdz)2()(∴ctdtizdz10)2(Im=10)2(tdti=i2112.计算积分1212102sinzzdzzzze.解:1212102sinzzdzzzze=1)3)(2(2sinzzdzzzze作区域D:1z积分途径在D内被积函数的奇点Z=2与Z=3均不在D内,所以被积函数在D内解析.由定理4.2得:1212102sinzzdzzzze=03.计算积分czcdzzz41:,)1)(1(132.解:cdzzz)1)(1(132∵奇点z=1和z=-1不在区域D,1z内013z的三个根2,1,0,32kezikk也不在D内∴由定理4.2得cdzzz)1)(1(132=04.计算积分czdzze5,5:zc.解:由定理4.6得0)4(5])[(!42zzczeidzze12i四、证明题1.计算积分121zdzz,并由此证明0cos45cos210dn.证明:∵21)(zzf在圆域|z|≤1内解析∴121zdzz=1021zdzz另一方面,在圆|z|=)2)(sin(cos1zi∴121zdzz=)sin(cos2sincos1id(实部和虚部为0)=diiiicdi]sin)cos2][(sin)cos2[(]sin)cos2[(cossin2sincoscossin=disincoscos44)1cos2(sin2=dzicos45)cos21(sin2=didcos45cos21cos45sin2∵121zdzz=0∴0cos45sin2d∴0cos45cos21d而cos45cos21为偶函数∴0=dcos45cos21=d0cos45cos21